UVa11424 GCD - Extreme (I)
直接两重循环O(n^2)算gcd……未免太耗时
枚举因数a和a的倍数n,考虑gcd(i,n)==a的i数量(i<=n)
由于gcd(i,n)==a等价于gcd(i/a,n/a)==1,所以满足gcd(i,n)==a的数有phi[n/a]个
打出欧拉函数表,枚举因数,计算出每个n的f[n]=gcd(1,n)+gcd(2,n)+gcd(3,n)+...+gcd(n-1,n)
然后求f[n]的前缀和,回答询问。
/*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int pri[mxn],cnt=;
long long phi[mxn],f[mxn];
void PHI(){
for(int i=;i<mxn;i++){
if(!phi[i]){
phi[i]=i-;
pri[++cnt]=i;
}
for(int j=;j<=cnt && (long long)i*pri[j]<mxn;j++){
if(i%pri[j]==){
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
else phi[i*pri[j]]=phi[i]*(pri[j]-);
}
}
return;
}
int main(){
PHI();
int i,j;
for(i=;i<mxn;i++){//枚举因数
for(j=i*;j<mxn;j+=i){
f[j]+=i*phi[j/i];
}
}
for(i=;i<mxn;i++)f[i]+=f[i-];
while(){
i=read();
if(!i)break;
printf("%lld\n",f[i]);
}
return ;
}
UVa11424 GCD - Extreme (I)的更多相关文章
- 洛谷 - UVA11424 - GCD - Extreme (I) - 莫比乌斯反演 - 整除分块
		
https://www.luogu.org/problemnew/show/UVA11424 原本以为是一道四倍经验题来的. 因为输入的n很多导致像之前那样 \(O(n)\) 计算变得非常荒谬. 那么 ...
 - UVA11424 GCD - Extreme (I)[数论]
		
其实这题我也没太明白... 我们要求 \[ \sum_{i=1}^{N-1}\sum_{j=i+1}^Ngcd(i,j) \] 引理: 我们要求\(gcd(i,j)=k\)的个数,可转化为求\(gcd ...
 - spoj  3871. GCD Extreme 欧拉+积性函数
		
3871. GCD Extreme Problem code: GCDEX Given the value of N, you will have to find the value of G. Th ...
 - UVA 11426 GCD - Extreme (II)  (欧拉函数)
		
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
 - UVA 11426 - GCD - Extreme (II) (数论)
		
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...
 - 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
		
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...
 - UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
		
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
 - GCD - Extreme (II) for(i=1;i<N;i++)     for(j=i+1;j<=N;j++)     {         G+=gcd(i,j);     }  推导分析+欧拉函数
		
/** 题目:GCD - Extreme (II) 链接:https://vjudge.net/contest/154246#problem/O 题意: for(i=1;i<N;i++) for ...
 - [日常摸鱼]UVA11424&11426 GCD - Extreme
		
话说UVa的机子跑的好快呀- (两题题意一样,前一题数据范围比较小) 题意:求$\sum_{i=1}^{n-1} \sum_{j=i+1}^n gcd(i,j),n<4\times 10^6$ ...
 
随机推荐
- flowvisor连接ovs
			
1 开启flowvisor $ sudo -u flowvisor fvconfig generate /etc/flowvisor/config.json $ sudo /etc/init.d/fl ...
 - 【思维题】TCO14 Round 2C InverseRMQ
			
全网好像就只有劼和manchery写了博客的样子……:正解可能是最大流?但是仔细特判也能过 题目描述 RMQ问题即区间最值问题是一个有趣的问题. 在这个问题中,对于一个长度为 n 的排列,query( ...
 - Voyager的数据库操作与Bread Builder,解决国内打开网速超级慢的问题
			
Products表的创建: Bread Builder 伟大的XX封了谷哥,所以有关网站实在是打不开,正准备放弃的时候,突然发现问题了,对就是这个网站ajax.googleapis.com,由于调用的 ...
 - jenkins+maven+svn 自动化部署
			
背景: 公司的web平台使用JAVA写的,但是不是用Tomcat部署的,代码内部自带了Web服务器,所以只需要有JAVA环境,将代码打包上传,启动脚本就可以. 项目是根据pom.xml打包成的是.zi ...
 - mysql替换表中某字段的某值
			
UPDATE `cases` SET `case_desc` = replace(`case_desc`, 'src="//tuku-assets.m.jia.com/assets/i ...
 - 【linux】【指令集】查看是否打开selinux
			
> getenforce selinux相关原理资料参考 <鸟哥的linux私房菜> http://cn.linux.vbird.org/linux_server/0210netw ...
 - Python入门学习笔记2:刷题
			
1) LeetCode 强的面试题和算法题,要求也比较高,很多国内外的码农在上面刷题.难度从easy到hard都有,而且覆盖面极广,需要你的综合实力去答题. 最简单的题比如字符串的处理有的时候也要用到 ...
 - LeetCode(226)Invert Binary Tree
			
题目 分析 交换二叉树的左右子树. 递归非递归两种方法实现. AC代码 class Solution { public: //递归实现 TreeNode* invertTree(TreeNode* r ...
 - ZOJ 2314 (sgu 194) Reactor Cooling (无源汇有上下界最大流)
			
题意: 给定n个点和m条边, 每条边有流量上下限[b,c], 求是否存在一种流动方法使得每条边流量在范围内, 而且每个点的流入 = 流出 分析: 无源汇有上下界最大流模板, 记录每个点流的 in 和 ...
 - Linux学习-RPM 软件管理程序: rpm
			
RPM 默认安装的路径 一般来说,RPM 类型的文件在安装的时候,会先去读取文件内记载的设定参数内容,然后将该数据用来比对 Linux 系统的环境,以找出是否有属性相依的软件尚未安装的问题. 若环境检 ...