2721: [Violet 5]樱花

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 547  Solved: 322
[Submit][Status][Discuss]

Description

Input

Output

Sample Input

 

Sample Output

 

HINT

Source

分析:

考虑$y$大于$n!$,但是要求个数,所以不可能无限大,所以我们需要寻找的就是上界,考虑让$y=n!+t$,那么$\frac {1}{x}+\frac {1}{n!+t}=\frac {1}{n!}$...

然后化简一下:$n!(n!+t)+x(n!)=x(n!+t)-->x=\frac {n!(n!+t)}{t}-->x=\frac {(n!)^{2}}{t}+n!$...

所以个数就是$(n!)^{2}$的约数个数...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; const int maxn=1000000+5,mod=1e9+7; int n,cnt,vis[maxn],pri[maxn],num[maxn],Min[maxn]; inline void prework(void){
cnt=0;
for(int i=2;i<=n;i++){
if(!vis[i])
pri[++cnt]=i,Min[i]=cnt;
for(int j=1;j<=cnt&&pri[j]*i<=n;j++){
vis[i*pri[j]]=1,Min[i*pri[j]]=j;
if(i%pri[j]==0)
break;
}
}
} inline void calc(int x){
while(x!=1)
num[Min[x]]++,x/=pri[Min[x]];
} signed main(void){
scanf("%d",&n);prework();
for(int i=1;i<=n;i++)
calc(i);
long long ans=1LL;
for(int i=1;i<=cnt;i++)
(ans+=1LL*ans*num[i]%mod*2%mod)%=mod;
printf("%lld\n",ans);
return 0;
}

  


By NeighThorn

2721: [Violet 5]樱花的更多相关文章

  1. 【BZOJ 2721】 2721: [Violet 5]樱花 (筛)

    2721: [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 599  Solved: 354 Description Input ...

  2. bzoj 2721[Violet 5]樱花 数论

    [Violet 5]樱花 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 671  Solved: 395[Submit][Status][Discuss ...

  3. [BZOJ 2721] [Violet 5] 樱花 【线性筛】

    题目链接:BZOJ - 2721 题目分析 题目大意:求出 1 / x + 1 / y = 1 / n! 的正整数解 (x, y) 的个数. 显然,要求出正整数解 (x, y) 的个数,只要求出使 y ...

  4. 2721: [Violet 5]樱花|约数个数

    先跪一发题目背景QAQ 显然x,y>n!,然后能够设y=n!+d 原式子能够化简成 x=n!2d+n! 那么解的个数也就是n!的因子个数,然后线性筛随便搞一搞 #include<cstdi ...

  5. BZOJ 2721: [Violet 5]樱花

    (X-N)(Y-N)=N^2 #include<cstdio> using namespace std; const int mod=1e9+7; int n,cnt,isprime[10 ...

  6. BZOJ_2721_[Violet 5]樱花_数学

    BZOJ_2721_[Violet 5]樱花_数学 Description Input Output $\frac{1}{x}+\frac{1}{y}=\frac{1}{m}$ $xm+ym=xy$ ...

  7. 【BZOJ2721】[Violet 5]樱花 线性筛素数

    [BZOJ2721][Violet 5]樱花 Description Input Output Sample Input 2 Sample Output 3 HINT 题解:,所以就是求(n!)2的约 ...

  8. BZOJ2721 [Violet 5]樱花

    先令n! = a: 1 / x + 1 / y = 1 / a  =>  x = y * a / (y - a) 再令 k = y - a: 于是x = a + a ^ 2 / k  => ...

  9. 【bzoj2721】[Violet 5]樱花

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2721 好久没做数学题了,感觉有些思想僵化,走火入魔了. 这道题就是求方程$ \frac ...

随机推荐

  1. rsync常用命令和使用方法

    rsync是一个远程数据同步工具,可以实现数据的增量备份,这点比scp要好,scp只能全量备份.同步可以保持文件原有属性,传输过程加密,数据传输全. rsync 的传输模式有:        1. 本 ...

  2. 关于sql查询结果集的链接

    开通博客有一段时间了,第一次博文.本身是个理工科的,没啥文采,就想着把平时遇到的问题记录下来,防止自己以后忘了还要去翻找. 今天看到同事写的代码,查询两张表里的数据,结果集类型是一样的.写了两条查询, ...

  3. vmware 开机自动启动

    vmware开机自动启动, 可以使用vmrun命令. 1. 首先在“我的电脑”-“属性”-“高级”-“环境变量”-“PATH”中添加vmware路径,如:C:\Program Files (x86)\ ...

  4. 读书笔记3(Teamwork)

    今天我阅读了<构建之法>的第四章——两人合作,它主要讲述了在两人合作进行项目时与单人作业时的区别与不同,其中最重要的就是代码规范.代码规范:我们写的代码虽然是电脑运行,但是最终还是给人看的 ...

  5. mongodb安装,库操作,集合操作(表),文档操作(记录)

    安装 1.下载地址 https://fastdl.mongodb.org/win32/mongodb-win32-x86_64-2008plus-ssl-4.0.8-signed.msi 2.如果报没 ...

  6. 在VIM 里面编辑和保存

    #查看a.sh 的内容 cat a.sh #编辑a.sh的内容 键入i,下面会出现 insert,输入内容之后按下esc会退出编辑模式(此时下面的insert没有了) 再输入:wq保存

  7. CCPC_1005

    可怕.....的提.....显而易见的规律活活没照出来...不过说起来却是不能严格证明....于是...脑筋急转弯活活猜不出来..... 1*1->1*2->2*2->2*3-> ...

  8. 笔记-python-standard library-12.1 pickle

    笔记-python-standard library-12.1 pickle 1.      pickle简介 source code: Lib/pickle.py pickle模块实质上是一个实现p ...

  9. (PowerDesigner&Sqlite)PD中设计完表后,将其导入数据库中

    本人连接过SQLServer跟SQLite Ⅰ.SQLServer,百度,转一下:http://jingyan.baidu.com/article/7f766daf465e9c4101e1d0d5.h ...

  10. Java并发模型框架

    构建Java并发模型框架 Java的多线程特性为构建高性能的应用提供了极大的方便,但是也带来了不少的麻烦.线程间同步.数据一致性等烦琐的问题需要细心的考虑,一不小心就会出现一些微妙的,难以调试的错误. ...