使gcd最大的trick

Description

jyy就一直想着尽快回地球,可惜他飞船的燃料不够了。 
有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换。jyy
的飞船上共有 N个瓶子(1<=N<=1000) ,经过协商,火星人只要其中的K 个 。 jyy
将 K个瓶子交给火星人之后,火星人用它们装一些燃料给 jyy。所有的瓶子都没有刻度,只
在瓶口标注了容量,第i个瓶子的容量为Vi(Vi 为整数,并且满足1<=Vi<=1000000000 ) 。 
火星人比较吝啬,他们并不会把所有的瓶子都装满燃料。他们拿到瓶子后,会跑到燃料
库里鼓捣一通,弄出一小点燃料来交差。jyy当然知道他们会来这一手,于是事先了解了火
星人鼓捣的具体内容。火星人在燃料库里只会做如下的3种操作:1、将某个瓶子装满燃料;
2、将某个瓶子中的燃料全部倒回燃料库;3、将燃料从瓶子a倒向瓶子b,直到瓶子b满
或者瓶子a空。燃料倾倒过程中的损耗可以忽略。火星人拿出的燃料,当然是这些操作能
得到的最小正体积。 
jyy知道,对于不同的瓶子组合,火星人可能会被迫给出不同体积的燃料。jyy希望找
到最优的瓶子组合,使得火星人给出尽量多的燃料。

Input

第1行:2个整数N,K,  
第2..N 行:每行1个整数,第i+1 行的整数为Vi

Output

仅1行,一个整数,表示火星人给出燃料的最大值。

Sample Input

3 2
3
4
4

Sample Output

4

HINT

选择第2 个瓶子和第 个瓶子,火星人被迫会给出4 体积的容量。


题目分析

题意就是要求$n$个数里选出$k$个使其gcd最大。

常规来说xor问题拆位考虑;gcd问题分解考虑。

对于所有数,将其所有的因数(而非质因数)分解,统计时记录满足个数大于等于$k$的最大因数。

终点在于不能分解为质因数,并且对于一个数,其因数各统计唯一一次。

 #include<bits/stdc++.h>

 int n,k,mx,sv[];
std::map<int, int> mp; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int main()
{
n = read(), k = read();
for (int i=; i<=n; i++)
{
int x = read();
for (int j=sqrt(x+0.5); j; j--)
if (x%j==){
if (!mp[j]) sv[++sv[]] = j;
mp[j]++;
if (!mp[x/j]) sv[++sv[]] = x/j;
if ((j*j)^x) mp[x/j]++;
}
}
for (int i=; i<=sv[]; i++)
if (mp[sv[i]]>=k)
mx = mx>sv[i]?mx:sv[i];
printf("%d\n",mx);
return ;
}

END

【数学 裴蜀定理】bzoj2257: [Jsoi2009]瓶子和燃料的更多相关文章

  1. BZOJ_1441_Min_数学+裴蜀定理

    BZOJ_1441_Min_数学+裴蜀定理 Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Inpu ...

  2. BZOJ2257 [Jsoi2009]瓶子和燃料 【裴蜀定理】

    题目链接 BZOJ2257 题解 由裴蜀定理我们知道,若干的瓶子如此倾倒最小能凑出的是其\(gcd\) 现在我们需要求出\(n\)个瓶子中选出\(K\)个使\(gcd\)最大 每个数求出因数排序即可 ...

  3. bzoj2257 [Jsoi2009]瓶子和燃料 最大公约数

    [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1449  Solved: 889[Submit][Status][Di ...

  4. bzoj2257: [Jsoi2009]瓶子和燃料

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MB Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了 ...

  5. [BZOJ2257][Jsoi2009]瓶子和燃料(数学)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2257 分析: 1.先考虑确定的瓶子下的最小体积是多少 ①假设只有两个瓶子v1,v2,易 ...

  6. 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...

  7. BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)

    一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...

  8. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  9. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

随机推荐

  1. IOS开发 UITabBarController

    UITabBarController使用详解 UITabBarController是IOS中很常用的一个viewController,例如系统的闹钟程 序,ipod程序等.UITabBarContro ...

  2. builder模式的新学习

    builder模式的新学习 静态工厂和构造器有个共同的局限性:他们不能很好的扩展到大量的可选参数.大多数产品在牧歌可选与中都会有非零的值 对于这种类,应该使用哪种构造器或者静态方法来进行编写?程序员一 ...

  3. Python scrapy框架爬取瓜子二手车信息数据

    项目实施依赖: python,scrapy ,fiddler scrapy安装依赖的包: 可以到https://www.lfd.uci.edu/~gohlke/pythonlibs/  下载 pywi ...

  4. 小试JVM工具

    一.前言 工欲善其事必先利其器,jdk自带了很多工具,利用好这些工具能够帮我们获取想要的数据(运行日志.异常堆栈.GC日志.线程快照.堆转储快照等),从而快速的分析数据.定位问题. 二.jps:虚拟机 ...

  5. C# 面向对象之面向接口

    接口的定义 与类不同的是接口用interface关键字 (1)接口中所有成员不能添加任何修饰符,默认为public,如果显示指定修饰符将会出现编译错误; (2)接口中不能包含字段.运算符重载.实例构造 ...

  6. ZROI提高组模拟赛05总结

    ZROI提高组模拟赛05总结 感觉是目前为止最简单的模拟赛了吧 但是依旧不尽人意... T1 有一半的人在30min前就A掉了 而我花了1h11min 就是一个简单的背包,我硬是转化了模型想了好久,生 ...

  7. axios delete 请求

    axios delete 请求 在传递一个参数的时候,直接把参数放在请求连接后面,用'/' 连接就可以了 this.axios.post(this.APIURL+'/'+ID) //http://ww ...

  8. 湖南省2016省赛题。1809: Parenthesis 线段树

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1809 给定一串平衡的序列,要求交换两个位置之后,问其是否还平衡. 首先要注意到交换的是两个位置,这 ...

  9. PHP知识点总结4

    file1.php <?php namespace Foo\Bar\subnamespace; const FOO = 1; function foo() {} class foo { stat ...

  10. eCharts基础知识

    eCharts插件介绍 http://echarts.baidu.com/tutorial.html#ECharts%20%E7%89%B9%E6%80%A7%E4%BB%8B%E7%BB%8D