题目描述

小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题。一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题。于是当日课后,小明就向老师提出了这个问题:

一株奇怪的花卉,上面共连有N 朵花,共有N-1条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的。每朵花都有一个“美丽指数”,该数越大说明这朵花越漂亮,也有“美丽指数”为负数的,说明这朵花看着都让人恶心。所谓“修剪”,意为:去掉其中的一条枝条,这样一株花就成了两株,扔掉其中一株。经过一系列“修剪“之后,还剩下最后一株花(也可能是一朵)。老师的任务就是:通过一系列“修剪”(也可以什么“修剪”都不进行),使剩下的那株(那朵)花卉上所有花朵的“美丽指数”之和最大。

老师想了一会儿,给出了正解。小明见问题被轻易攻破,相当不爽,于是又拿来问你。

输入输出格式

输入格式:

输入文件maxsum3.in的第一行一个整数N(1 ≤ N ≤ 16000)。表示原始的那株花卉上共N 朵花。

第二行有N 个整数,第I个整数表示第I朵花的美丽指数。

接下来N-1行每行两个整数a,b,表示存在一条连接第a 朵花和第b朵花的枝条。

输出格式:

输出文件maxsum3.out仅包括一个数,表示一系列“修剪”之后所能得到的“美丽指数”之和的最大值。保证绝对值不超过2147483647。

输入输出样例

输入样例#1:

7
-1 -1 -1 1 1 1 0
1 4
2 5
3 6
4 7
5 7
6 7
输出样例#1:

3

说明

【数据规模与约定】

对于60%的数据,有N≤1000;

对于100%的数据,有N≤16000。

思路:

  树形DP入门题;

  二维的dp方程(1表示取,2表示舍);

  设1为根开始dfs;

  先到末节点,然后再一层一层往回返;

  每次取最优,方程在代码中;

来,上代码:

#include <cstdio>
#include <iostream> #define maxn 16005 using namespace std; struct EdgeType {
int to,next;
};
struct EdgeType edge[maxn<<]; int if_z,n,dis[maxn],dp[maxn][],head[maxn];
int pre[maxn],ans=-0x7ffffff,cnt=; bool if_[maxn]; char Cget; inline void in(int &now)
{
now=,if_z=,Cget=getchar();
while(Cget>''||Cget<'')
{
if(Cget=='-') if_z=-;
Cget=getchar();
}
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
now*=if_z;
} inline void edge_add(int u,int v)
{
cnt++;
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt;
} void search(int now)
{
if_[now]=true;
for(int i=head[now];i;i=edge[i].next)
{
if(if_[edge[i].to]) continue;
search(edge[i].to);
dp[now][]=max(dp[now][],dp[now][]+dp[edge[i].to][]);
dp[now][]=max(dp[now][],dp[edge[i].to][]);
}
ans=max(ans,max(dp[now][],dp[now][]));
} int main()
{
in(n);
for(int i=;i<=n;i++)
{
in(dis[i]);dp[i][]=dis[i];
ans=max(ans,dis[i]);
}
int u,v;
for(int i=;i<n;i++)
{
in(u),in(v);
edge_add(u,v);
edge_add(v,u);
}
search();
printf("%d\n",ans);
return ;
}

AC日记——最大子树和 洛谷 P1122的更多相关文章

  1. AC日记——[SDOI2015]星际战争 洛谷 P3324

    题目描述 3333年,在银河系的某星球上,X军团和Y军团正在激烈地作战. 在战斗的某一阶段,Y军团一共派遣了N个巨型机器人进攻X军团的阵地,其中第i个巨型机器人的装甲值为Ai.当一个巨型机器人的装甲值 ...

  2. AC日记——联合权值 洛谷 P1351

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  3. AC日记——[HAOI2015]树上操作 洛谷 P3178

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  4. AC日记——I Hate It 洛谷 P1531

    题目背景 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少.这让很多学生很反感. 题目描述 不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的 ...

  5. AC日记——神奇的幻方 洛谷 P2615(大模拟)

    题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...

  6. AC日记——[CQOI2009]DANCE跳舞 洛谷 P3153

    [CQOI2009]DANCE跳舞 思路: 二分+最大流: 代码: #include <cstdio> #include <cstring> #include <iost ...

  7. AC日记——松江1843路 洛谷七月月赛

    松江1843路 思路: 三分: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #define ...

  8. AC日记——严酷的训练 洛谷 P2430

    严酷的训练 思路: 背包: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 5005 int n,m,bi[m ...

  9. AC日记——[SDOI2010]大陆争霸 洛谷 P3690

    [SDOI2010]大陆争霸 思路: dijkstra模板: 代码: #include <bits/stdc++.h> using namespace std; #define maxn ...

随机推荐

  1. python计算机基础(三)

    简述Python垃圾回收机制: 当x=10,赋值x=11,的代码,也就是10没有对应的变量名, 10在python眼中相当于垃圾,就会被清理掉,释放内存. 对于下述代码: x = 10 y = 10 ...

  2. Linux学习-什么是进程 (process)

    触发 任何一个事件时,系统都会将他定义成为一个进程,并且给予这个进程一个 ID ,称为 PID,同时依据启发这个进程的用户与相关属性关系,给予这个 PID 一组有效的权限设定.从此以后,这 个 PID ...

  3. Monkeyrunner 简介及其环境搭建

    Monkeyrunner是通过坐标.控件ID和控件上的文字操作应用的界面元素,其测试用例是用python写的,这样就弥补了monkey只有简单命令无法执行复杂用例的缺陷.Monkeyrunner采用的 ...

  4. Linux网络编程:客户端/服务器的简单实现

    一. Socket的基本知识 1. socket功能 Socket层次 Socket实质上提供了进程通信的端点,进程通信之前,双方必须首先各自创建一个端点,否则是没有办法建立联系并相互通信的. 每一个 ...

  5. Mysql新建数据库、删除数据库

    新建数据库 create database db_name; //db_name为新建数据库的名字 mysql> create database db_name; Query OK, row a ...

  6. HDU 4871 Shortest-path tree 最短路 + 树分治

    题意: 输入一个带权的无向连通图 定义以顶点\(u\)为根的最短路生成树为: 树上任何点\(v\)到\(u\)的距离都是原图最短的,如果有多条最短路,取字典序最小的那条. 然后询问生成树上恰好包含\( ...

  7. HTTP的一些概念

    1. 什么是回调? 回调是异步编程时的基础,将后续逻辑封装成起始函数的参数,逐层嵌套 2. 什么是同步/异步? 同步是指:发送方发出数据后,等接收方发回响应以后才发下一个数据包的通讯方式. 异步是指: ...

  8. cobbler dell r730安装问题(四)

    环境介绍: 服务器硬件:dell-13代 R730 Intel xeon E5-2600系列CPU:E5-2609 v4.E5-2620 v4.E5-2650 v4 cobbler版本:cobbler ...

  9. 聊聊、Docker 安装

  10. [python篇] [伯乐在线][1]永远别写for循环

    首先,让我们退一步看看在写一个for循环背后的直觉是什么: 1.遍历一个序列提取出一些信息 2.从当前的序列中生成另外的序列 3.写for循环已经是我的第二天性了,因为我是一个程序员 幸运的是,Pyt ...