题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3501

用贝尔三角预处理贝尔数,拆模数并在 \( p \) 进制下使用公式,因为这样每次角标增加的是 \( p^{k} \);

循环使用数组非常优美!0~p 的角标背后是许多 \( p \) 的整数次幂,而角标那个数字是它的 \( p^0 \) 上的数,所以最后取 \( b[d[0]] \);

Claris 写得太好了!http://www.cnblogs.com/clrs97/p/4714467.html

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=,mod=;
int p[]={,,,},s[][xn],f[xn],b[xn],c[xn],d[];
ll n,m;
ll pw(ll a,int b,int md)
{
ll ret=; a=a%md;
for(;b;b>>=,a=(a*a)%md)if(b&)ret=(ret*a)%md;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void init()
{
f[]=f[]=s[][]=; s[][]=;
for(int i=,x=,j;i<=p[];i++,x^=)
for(j=,f[i]=s[x][]=s[x^][i-];j<=i;j++)
s[x][j]=upt(s[x^][j-]+s[x][j-]);
}
int cal(ll n,int p)
{
for(int i=;i<=p;i++)b[i]=f[i]%p;//<=
int m=;
while(n)d[m++]=n%p,n/=p; m--;
for(int i=;i<=m;i++)//i=1 -> d:0~m
for(int j=;j<=d[i];j++)//d[i]*p^k
{
for(int k=;k<p;k++)c[k]=(i*b[k]+b[k+])%p;
c[p]=(c[]+c[])%p;//c[p]!
for(int k=;k<=p;k++)b[k]=c[k];//<=!!!
}
return b[d[]];//id -> last digit
}
int main()
{
scanf("%lld%lld",&n,&m); init();
if(n<=p[]){printf("%lld\n",pw(m,f[n],mod+)); return ;}//
ll ans=;
for(int i=;i<=;i++)
{
int r=cal(n,p[i]),w=mod/p[i];
ans=(ans+(ll)w*pw(w,p[i]-,p[i])%mod*r)%mod;//w //%p[i]
}
printf("%lld\n",pw(m,ans,mod+));
return ;
}

bzoj 3501 PA2008 Cliquers Strike Back —— 贝尔数的更多相关文章

  1. bzoj 3501 PA2008 Cliquers Strike Back——贝尔数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3501 用贝尔三角形 p^2 地预处理 p 以内的贝尔数.可以模(mod-1)(它是每个分解下 ...

  2. BZOJ3501 : PA2008 Cliquers Strike Back

    \[\begin{eqnarray*}ans&=&m^{\sum_{i=1}^n Stirling2(n,i)\bmod 999999598}\bmod 999999599\\& ...

  3. 贝尔数(来自维基百科)& Stirling数

    贝尔数   贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列):   Bell Number Bn是基数为n的集合 ...

  4. HDU 2512 一卡通大冒险(第二类斯特林数+贝尔数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2512 题目大意:因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部 ...

  5. 贝尔数--Codeforces908E. New Year and Entity Enumeration

    给n<=50个长度m<=1000的二进制数,记他们为集合T,求满足下面条件的集合S数:令$M=2^m-1$,1.$a \epsilon S \Rightarrow a \ \ xor \ ...

  6. hdu2643&&hdu2512——斯特林数&&贝尔数

    hdu2643 题意:$n$ 个人的排名情况数($n \leq 100$) 分析:考虑 $n$ 个有区别的球放到 $m$ 个有区别的盒子里.无空盒的方案数为 $m!\cdot S(n, m)$. 这题 ...

  7. hdu4767 Bell——求第n项贝尔数

    题意 设第 $n$ 个Bell数为 $B_n$,求 $B_n \ mod  \ 95041567$.($1 \leq  n  \leq  2^{31}$) 分析 贝尔数的概念和性质,维基百科上有,这里 ...

  8. BZOJ.2159.Crash的文明世界(斯特林数 树形DP)

    BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...

  9. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

随机推荐

  1. OrCAD Capture出现丢失cdn_sfl401as.dll问题

    昨天晚上我PCB图的时候还用OrCAD这个组件来着呢.但是还是好好的.但是今天当我再次启动程序的时候就出现了以下的对话框. 当时就吓了好一跳.好好软件怎么突然就不行了呢?先说说我出现这个问题之后的内心 ...

  2. 嵌入式c语言笔试

    1 读程序段,回答问题int main(int argc,char *argv[]){int c=9,d=0;c=c++%5;d=c;printf("d=%d\n",d);retu ...

  3. 创业做移动互联网App的4个注意事项

    导语:大多数人对于做App还是比較盲目,有个想法立刻就去做了.做出来了才忽然想到市场和推广.我把做移动 互联网App注意事项情给大家列下. 文| 移动互联网李建华 近 来,常常有人问我关于推广的事情, ...

  4. 【转】windows下 ADT NDK开发环境配置

    前提: 下载好Ecplise ADT并配置好开发环境,不会配置环境可以参考这里: http://blog.csdn.net/danfengw/article/details/47111107 步骤: ...

  5. WCF配置心得

    根据蒋金楠老师的博文所说的, WCF的终结点有三个要素组成,分别是地址(Address).绑定(Binding)和契约(Contract),简记可写成Endpoint = ABC. 地址:地址决定了服 ...

  6. Chrome 的滚动条修改.

    该方法针对于win下Chrome任何版本(未测试基于Chrome内核的其他浏览器),Lunix就是目录换了一下 目录是:**\Google\Chrome\User Data\Profile 2\Use ...

  7. Grunt学习笔记【6】---- grunt-contrib-requirejs插件详解

    本文主要讲如何使用Grunt实现RequireJS文件压缩. 一 说明 ES6出来前,RequireJS是JavaScript模块化最常用的方式之一.对于使用RequireJS构建的项目,要实现打包压 ...

  8. 我的Java开发学习之旅------>求字符串中出现次数最多的字符串以及出现的次数

    金山公司面试题:一个字符串中可能包含a~z中的多个字符,如有重复,如String data="aavzcadfdsfsdhshgWasdfasdf",求出现次数最多的那个字母及次数 ...

  9. 20170325 ABAP调用webservice

    转自:http://www.cnblogs.com/SolisOculus/archive/2013/04/01/2993198.html 在ABAP中调用Webservice     1.创建Pro ...

  10. git删除远程分支【转】

    本文转载自:https://my.oschina.net/tsingxu/blog/84601 如果不再需要某个远程分支了,比如搞定了某个特性并把它合并进了远程的 master 分支(或任何其他存放  ...