题目

有一棵点数为N的树,树边有边权。给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并

将其他的N-K个点染成白色。将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益。

问收益最大值是多少。

输入格式

第一行两个整数N,K。

接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to)。

输入保证所有点之间是联通的。

N<=2000,0<=K<=N

输出格式

输出一个正整数,表示收益的最大值。

输入样例

5 2

1 2 3

1 5 1

2 3 1

2 4 2

输出样例

17

提示

【样例解释】

将点1,2染黑就能获得最大收益。

题解

我dp真是太弱了

很自然地可以想到设一个dp状态\(f[i][j]\),表示\(i\)为根的子树中选\(j\)个黑点的最大收益

这个时候会不会有些奇怪?这个收益具体指什么?

由题目可知,我们得到的收益必须是成对点贡献出来的,每个区域不能作为独立的个体产生贡献

我们考虑把点与点间的贡献转移到边上

对于一条边\((u,v)\),我们记\(u\)一侧的黑点数为\(b_u\),白点数为\(w_u\),\(v\)一侧类似

那么该边的贡献就为

\[w_{(u,v)} * (b_u * b_v + w_u * w_v)
\]

那么我们改变一下:\(f[i][j]\)表示\(i\)为根的子树中选\(j\)个黑点,此时子树中的边产生的最大贡献

那么就很好转移了

对于节点\(i\),其子树的贡献已经算出,我们只需要考虑其到子树的边的贡献即可

我们枚举其儿子\(t\),并枚举儿子选的黑点数,再枚举剩余的子树的黑点数计入贡献

乍一看似乎\(O(n^3)\)

仔细分析一下,我们枚举的是子树的大小,每个子树产生的复杂度为\(O(siz[t] * (siz[u] - siz[t]))\),就相当于该子树的点与剩余子树的点形成的点对的个数

也就是说,我们实质在枚举点对,而且容易发现,每对点对只会在其\(lca\)处被枚举

所以可以保证是\(O(n^2)\)的

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 2005,maxm = 10005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int to,nxt; LL w;}ed[maxm];
inline void build(int u,int v,LL w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
}
LL f[maxn][maxn],t[maxn];
int siz[maxn],fa[maxn],n,K;
inline void cmax(LL& a,LL b){if (a < b) a = b;}
void dfs(int u){
siz[u] = 1;
for (int i = 2; i <= n + 1; i++) f[u][i] = -INF;
Redge(u) if ((to = ed[k].to) != fa[u]){
fa[to] = u;
dfs(to);
for (int i = 0; i <= siz[u] + siz[to]; i++) t[i] = -INF;
for (int i = 0; i <= siz[u]; i++)
for (int j = 0; j <= siz[to]; j++)
cmax(t[i + j],f[u][i] + f[to][j] + ed[k].w * (j * (K - j) + (siz[to] - j) * (n - K - (siz[to] - j))));
siz[u] += siz[to];
for (int i = 0; i <= siz[u]; i++)
f[u][i] = t[i];
}
}
int main(){
n = read(); K = read();
int a,b; LL w;
for (int i = 1; i < n; i++){
a = read(); b = read(); w = read();
build(a,b,w);
}
dfs(1);
printf("%lld\n",f[1][K]);
return 0;
}

BZOJ4033 [HAOI2015]树上染色 【树形dp】的更多相关文章

  1. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  2. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  3. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  4. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  5. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  6. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  7. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  8. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  9. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  10. 【BZOJ4033】【HAOI2015】树上染色 树形DP

    题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...

随机推荐

  1. VS开发软winform软件的更改用户使用权限

    在使用软件的过程中,我们经常需要使用的软件拥有管理员权限,在开发的过程中,本人就遇到了应为权限不足的问题导致软件不能正常使用的状况. 在此我来记录我遇到的问题. 为开发的软件赋予管理员权限 https ...

  2. java中的String对象的创建及堆栈的解释

    java中的string真的是很令人头疼呢!!! 请看这里 看这里

  3. bower使用

    1,先安装nodejs(npm),Git 2,安装bower cmd执行到在项目文件夹下路径,执行npm install bower 3,执行bower init  项目根目录下将生成bower.js ...

  4. C#MySQL增删改查

    首先在项目中添加引用 using MySql.Data.MySqlClient; 连接字符串  private string connString="server=localhost;use ...

  5. 使用 CFile 的子类 CStdioFile 的注意事项

    目前为止只用到了 ReadString,也了解了一下 WriteString. 由于程序需要,本来程序中是用的CFile, 但是需要逐行读取文件数据,所以谷歌找到了 ReadString 类 —— 继 ...

  6. 53. Maximum Subarray@python

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  7. MyBatis逆向工程中的Mapper接口以及Example的实例函数及详解

    一.mapper接口中的方法解析 mapper接口中的函数及方法 方法 功能说明 int countByExample(UserExample example) thorws SQLException ...

  8. Python爬虫系列-BeautifulSoup详解

    安装 pip3 install beautifulsoup4 解析库 解析器 使用方法 优势 劣势 Python标准库 BeautifulSoup(markup,'html,parser') Pyth ...

  9. destoon 支付异步接口文件 notify.php 调试方式

    在if($verify_result) { 之前复制这三个变量 就可以直接访问notify.php 启用调试模式 或者 逐步echo 相关变量来调试 错误原因   notify.php没有入口文件 是 ...

  10. 多进程 multiprocessing 多线程Threading 线程池和进程池concurrent.futures

    multiprocessing.procsess 定义一个函数 def func():pass 在if __name__=="__main__":中实例化 p = process( ...