BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041
题意:
给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^2的圆周上,有多少个坐标为整数的点。
题解:
科普视频:http://www.bilibili.com/video/av12131743/
推导的大致思路:

推导:
一、17 = 4^2 + 1^2
求圆周上有多少个点,就是求有多少个整数对(a,b)满足a^2 + b^2 = R^2。
二、17 = (4+i)*(4-i)
变形:a^2 + b^2 = (a + b*i) * (a - b*i) = R^2。
其中,a + b*i 与 a - b*i 复共轭。
也就是将R^2分解成(a + b*i) * (a - b*i)。
有一个结论,对于整数a来说:
(1)如果a为4n + 1型的素数,则a可以被分解为两个不同的高斯素数。
(2)如果a为4n + 3型的素数,则不能被分解。因为它们不仅是普通素数,还是高斯素数。
(即费马平方和定理:只有4n+1型的素数,才能表示成两个数的平方和)
分解方法:
(1)首先将R^2分解质因数,R^2 = a1^p1 + a2^p2 +...
(2)然后将R^2继续分解成若干高斯素数之积。
(3)将这些高斯素数分成两组,如果这两组各自之积复共轭,则为一对合法的(a,b)。
其中,将高斯素数分组时,对于一个素因子ai,有pi+1中分组方法。
特别地,2^k对于最终答案没有影响。
根据乘法原理,在能够分组(分成复共轭数)的前提下,最终的分组方法数 = 4*∏(pi+1)。
(这就是本题的做法。分解质因数,复杂度O(sqrt(N)))
三、积性函数χ(n),求π的表达式(这部分跟此题无关)
对于函数χ(n),定义为:
(1)n = 4k + 1时,χ(n) = 1
(2)n = 4k + 3时,χ(n) = -1
(3)n为偶数时,χ(n) = 0
函数χ(n)对于任意整数满足性质:χ(ab) = χ(a)*χ(b),所以χ(n)为积性函数。
将圆上点的数量写成如下形式:

即:N = 4*∏(∑ χ(ki)),ki为R^2的因子。
将上式拆开,每一项χ(n)的n为R的因子:

圆内所有点的个数:

移动之后:

所以得到了圆内点的个数,也就是圆面积的另一种表达形式。
最终得到了一个π的表达式。

AC Code:
#include <iostream>
#include <stdio.h>
#include <string.h> using namespace std; long long n;
long long ans=; int main()
{
cin>>n;
n=n*n;
long long t=n;
while(!(t&)) t>>=;
for(int i=;i*i<=n && t>;i++)
{
int p=;
while(t%i==)
{
p++;
t/=i;
}
if(i%==) ans*=(p+);
else if(i%== && (p&))
{
ans=;
break;
}
}
if(t%==) ans=;
cout<<ans*<<endl;
}
BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】的更多相关文章
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- BZOJ 1041 [HAOI2008]圆上的整点:数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...
- BZOJ(2) 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4966 Solved: 2258[Submit][Sta ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
- 【BZOJ】1041: [HAOI2008]圆上的整点(几何)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1041 所谓的神题,我不会,直接题解..看了半天看懂题解了.详见hzwer博客 这题呢,我只能 ...
- 1041: [HAOI2008]圆上的整点 - BZOJ
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数.Input rOutput 整点个数Sample Input4Sample Output4HINT n ...
随机推荐
- 手动脱Mole Box壳实战总结
作者:Fly2015 这个程序是吾爱破解脱壳练习第8期的加壳程序,该程序的壳是MoleBox V2.6.5壳,这些都是广告,能够直接无视了.前面的博客手动脱Mole Box V2.6.5壳实战中已经给 ...
- JAVA_Could not find property [struts.actionMapping]怎么办
你的项目中不包含log4j.jar这个文件,包含进去即可
- vue.js+koa2项目实战(五)axios 及 vue2.0 子组件和父组件之间的传值
axios 用法: 1.安装 npm install axios --save-dev 2.导入 import axios from 'axios'; 3.使用 axios.post(url,para ...
- Vue 引入ElementUI 2.0.11:依赖未发现的问题
转自:https://blog.csdn.net/cslucifer/article/details/79019649
- docker创建私有仓库及存储image
Docker官方的Docker hub尽管提供了有非常多image,也基本上包括了我们须要使用的,可是其訪问起来比較慢.假设自己要定制image.多台server之间的共享使用此image非常不方便. ...
- 【Excle数据透视表】如何快速选取所有标签并标注黄色底纹
如下图:需要把所有标签标注为黄色底纹该如何操作呢? 步骤 单击数据透视表任意单元格→数据透视表工具→分析→选择→整个数据透视表→选择→标签→开始→字体组合中"填充颜色" 第一次选择 ...
- swiper的理解
参考:Swiper中文网 Swiper使用方法: <!DOCTYPE html> <html> <head> <meta charset="UTF- ...
- (七)jQuery中的DOM操作
一.jQuery的DOM操作 (1)查找节点: 查找元素节点: 1. 获取指定的标签节点 $(“上级标签 标签:eq(“标签索引”) ; 如:var li = $("ul li:eq(2) ...
- hdu4857 & BestCoder Round #1 逃生(拓扑逆排序+优先队列)
题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=4857 ----------------------------------------------- ...
- centos-64整合nginx和tomcat
centos-64整合nginx和tomcat 分类: Linux 2013-04-25 10:41 128人阅读 评论(0) 收藏 举报 1.安装wget和依赖包 yum install wget ...