Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 20715   Accepted: 10910

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:



In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3 题目分析:T组数据,每组有n个节点,n-1条边,所以必定会是一棵树。每组输入的最后一行是两个点u, v。问你u和v的最近公共祖先是谁?
Tanjan离线算法。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <vector>
#include <algorithm>
#define N 10000+10 using namespace std;
int n; int s, e;
vector<int>q[N];
int fa[N];
bool vis[N];
bool root[N];//标记该点是不是根节点 int findset(int x) //压缩路径并查集
{
return fa[x]!=x?fa[x]=findset(fa[x]):x;
} void LCA(int u)
{
for(int i=0; i<q[u].size(); i++)
{
LCA(q[u][i]);
if(findset(u) != findset(q[u][i]))
{
fa[fa[q[u][i]]] = fa[u]; //合并
}
}
vis[u]=true;
if(u==s && vis[e]==true )
{
printf("%d\n", findset(e));
return ;
}
if(u==e && vis[s]==true )
{
printf("%d\n", findset(s));
return ;
}
} int main()
{
int t;
scanf("%d", &t);
int i, j, k;
int u, v;
while(t--)
{
scanf("%d", &n); //n个节点
//初始化
for(i=0; i<=n; i++){
q[i].clear();
fa[i]=i; //将父亲节点设为自己
root[i]=true;
vis[i]=false; //标记未访问
}
for(i=0; i<n-1; i++)
{
scanf("%d %d", &u, &v); //u是v的父亲节点
q[u].push_back(v);
root[v]=false;
}
scanf("%d %d", &s, &e); for(i=1; i<=n; i++)
{
if(root[i]==true )//该点是根节点
{
LCA(i); //进行LCA一次离线算法
break;
}
}
}
return 0;
}

POJ 1330 Nearest Common Ancestors 【最近公共祖先LCA算法+Tarjan离线算法】的更多相关文章

  1. POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)

    LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...

  2. POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题

    A rooted tree is a well-known data structure in computer science and engineering. An example is show ...

  3. 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18136   Accept ...

  4. poj 1330 Nearest Common Ancestors 求最近祖先节点

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37386   Accept ...

  5. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  6. POJ 1330 Nearest Common Ancestors (模板题)【LCA】

    <题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...

  7. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  10. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

随机推荐

  1. springnodejs

    作者 : solq 最新文档请看 http://www.springnodejs.com 本文不再更新 blog : http://www.cnblogs.com/solq/p/3574640.htm ...

  2. 【FUN】——英文版面青年教育网站策划&GUI设计

    写在前面:这个教育网页一共分为四个页面,首页.课程.活动.空间.是我在学习网页设计与策划的时候作为知识应用练习做的,主要使用Photoshop软件设计构图,其中图片素材与部分灵感来源于网络. 一.网站 ...

  3. WinForm启动时接收参数

    1 默认的Main函数,修改如下: static class Program { /// <summary> /// 应用程序的主入口点. /// </summary> [ST ...

  4. Another unnamed CacheManager already exists in the same VM

    今天学习Spring 缓存机制.遇到不少问题~ 好不easy缓存的单元測试用例调试成功了,在同一项目下单元測试另外一个文件时,发生了异常: org.springframework.beans.fact ...

  5. Android开发之WebView具体解释

    概述: 一个显示网页的视图.这个类是你能够滚动自己的Web浏览器或在你的Activity中简单地显示一些在线内容的基础.它使用了WebKit渲染引擎来显示网页,包含向前和向后导航的方法(通过历史记录) ...

  6. Theano学习笔记(四)——导数

    导数使用T.grad计算. 这里使用pp()打印梯度的符号表达式. 第3行输出是打印了经过优化器简化的符号梯度表达式,与第1个输出相比确实简单多了. fill((x** TensorConstant{ ...

  7. 【ORACLE】ORA-27102: out of memory报错的处理

    ************************************************************************ ****原文:blog.csdn.net/clark_ ...

  8. js高度line-height及宽度text-align:center居中插件

    1.高度居中---在高度设为100%,无法直接使用line-height:100%;会不起效果 这是用于应对height:100%的插件 /** * 高度居中函数,用于应对高度设为100%时的居中 * ...

  9. 把对象写入Postgresql中

    工作中,遇到把大对象写入Postgresql数据库中 package com.geni_sage.gdme.cws.dic; import java.io.BufferedInputStream; i ...

  10. Unable to save settings: Failed to save settings. Please restart PyCharm解决

    将工程的.ideas目录删掉,重启pycharm即可.