Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 20715   Accepted: 10910

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:



In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3 题目分析:T组数据,每组有n个节点,n-1条边,所以必定会是一棵树。每组输入的最后一行是两个点u, v。问你u和v的最近公共祖先是谁?
Tanjan离线算法。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <vector>
#include <algorithm>
#define N 10000+10 using namespace std;
int n; int s, e;
vector<int>q[N];
int fa[N];
bool vis[N];
bool root[N];//标记该点是不是根节点 int findset(int x) //压缩路径并查集
{
return fa[x]!=x?fa[x]=findset(fa[x]):x;
} void LCA(int u)
{
for(int i=0; i<q[u].size(); i++)
{
LCA(q[u][i]);
if(findset(u) != findset(q[u][i]))
{
fa[fa[q[u][i]]] = fa[u]; //合并
}
}
vis[u]=true;
if(u==s && vis[e]==true )
{
printf("%d\n", findset(e));
return ;
}
if(u==e && vis[s]==true )
{
printf("%d\n", findset(s));
return ;
}
} int main()
{
int t;
scanf("%d", &t);
int i, j, k;
int u, v;
while(t--)
{
scanf("%d", &n); //n个节点
//初始化
for(i=0; i<=n; i++){
q[i].clear();
fa[i]=i; //将父亲节点设为自己
root[i]=true;
vis[i]=false; //标记未访问
}
for(i=0; i<n-1; i++)
{
scanf("%d %d", &u, &v); //u是v的父亲节点
q[u].push_back(v);
root[v]=false;
}
scanf("%d %d", &s, &e); for(i=1; i<=n; i++)
{
if(root[i]==true )//该点是根节点
{
LCA(i); //进行LCA一次离线算法
break;
}
}
}
return 0;
}

POJ 1330 Nearest Common Ancestors 【最近公共祖先LCA算法+Tarjan离线算法】的更多相关文章

  1. POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)

    LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...

  2. POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题

    A rooted tree is a well-known data structure in computer science and engineering. An example is show ...

  3. 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18136   Accept ...

  4. poj 1330 Nearest Common Ancestors 求最近祖先节点

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37386   Accept ...

  5. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  6. POJ 1330 Nearest Common Ancestors (模板题)【LCA】

    <题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...

  7. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  8. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  9. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  10. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

随机推荐

  1. MongoDB下载安装測试及使用

    1.下载安装 64位:mongodb-win32-x86_64-enterprise-windows-64-2.6.4-signed.msi 余数为1的 db.collection.find({ &q ...

  2. Linux学习之十七-配置Linux简单的脚本文件自启动

    配置Linux简单的脚本文件自启动 在Linux中使用shell脚本解决一些问题会比单独执行多条命令要有效率,脚本文件规定命名以.sh结尾,最基本的规则就是其内容是命令,想要脚本文件开机自启动,就需要 ...

  3. IntelliJ IDEA创建文件时自动填入作者时间 定制格式

    IntelliJ IDEA创建文件时自动填入作者时间 定制格式 学习了:https://blog.csdn.net/Hi_Boy_/article/details/78205483 学习了:http: ...

  4. Android内存泄露调试

    Android 内存泄漏调试 一.概述 如果我们编写的代码当中有太多的对内存使用不当的地方,难免会使得我们的设备运行缓慢,甚至是死机.为了能够使得 Android 应用程序安全且快速的运行, Andr ...

  5. HTML5 Canvas 八星聚义动态效果

    昔有石碣村七星聚义,今有Canvas八星聚义.动态效果是,八颗星以等速螺线慢慢向中心聚集,最后汇聚成一颗. 效果: 代码: <!DOCTYPE html> <html lang=&q ...

  6. Android 开发程序员必备网站

    开发必备网站: Android 开发各种工具下载 Android 开发国内大牛集合 Android 开发技术博客周刊 Android 开发技术周报中文版 Android 优秀开源项目集合以及源码分析 ...

  7. html5,audio音乐播放器

    最终,做了自己原来一直想要实现的事儿.得出的结果是,有些事儿一旦開始做了,那么它就并非非常难. 如今的我,正听着自己的播放器放出的<光辉岁月>写这篇周六清晨的博文.写的不是非常好.但也请各 ...

  8. 地图之CLLocationManager的使用 定位功能使用

    1.iOS8曾经使用CLLocationManager 1.导入头文件 <CoreLocation/CoreLocation.h> 2.创建位置管理者 CLLocationManager ...

  9. libGDX 模块概览

    本文章翻译自libGDX官方wiki,.转载请注明出处:http://blog.csdn.net/kent_todo/article/details/37940595 libGDX官方网址:http: ...

  10. 【Excle数据透视表】如何移动数据透视表的位置

    数据透视表创建完成了,现在需要将它移动到D5位置,如何移动呢? 解决办法 通过"移动数据透视表"功能实现数据透视表的位置移动 步骤1 单击数据透视表任意单元格→数据透视表工具→分析 ...