a survey for RL
• A finite set of states St summarizing the information the agent senses from the environment at every time step t ∈ {1, ..., T}.
• A set of actions At which the agent can perform at each time step t ∈ {1, ..., T} to interact with the environment.
• A set of transition probabilities between subsequent states which render the environment stochastic. Note: the probabilities are usually not explicitly modeled but the result of the stochastic nature of the financial asset’s price process.
• A reward (or return) function Rt which provides a numerical feedback value rt to the agent in response to its action At−1 = at−1 in state St−1 = st−1.
• A policy π which maps states to concrete actions to be carried out by the agent. The policy can hence be understood as the agent’s rules for how to choose actions.
• A value function V which maps states to the total (discounted) reward the agent can expect from a given state until the end of the episode (trading period) under policy π.
Given the above framework, the decision problem is formalized as finding the optimal policy π = π ∗ , i.e., the mapping from states to actions, corresponding to the optimal value function V ∗ - see also Dempster et al. (2001); Dempster and Romahi (2002):
V ∗ (st) = max at E[Rt+1 + γV ∗ (St+1)|St = st ].(1)
Hereby, E denotes the expectation operator, γ the discount factor, and Rt+1 the expected immediate reward for carrying out action At = at in state St = st . Further, St+1 denotes the next state of the agent. The value function can hence be understood as a mapping from states to discounted future rewards which the agent seeks to maximize with its actions.
To solve this optimization problem, the Q-Learning algorithm (Watkins, 1989) can be applied, extending the above equation to the level of state-action tuples:
Q ∗ (st , at) = E[Rt+1 + γ max at+1 Q ∗ (St+1, at+1)|St = st , At = at ].(2)
Hereby, the Q-value Q∗ (st , at) equals to the immediate reward for carrying out action At = at in state St = st plus the discounted future reward from carrying on in the best way possible.
The optimal policy π ∗ (the mapping from states to actions) then simply becomes:
π ∗ (st) = max at Q ∗ (st , at) .(3)
i.e., in every state St = st , choose the action At = at that yields the highest Q-value. To approximate the Q-function during (online) learning, an iterative optimization is carried out with α denoting the learning rate - see also Sutton and Barto (1998) for further details:
Q ∗ (st , at) ← (1 − α) Q ∗ (st , at) + α (rt+1 + γ max at+1 Q ∗ (st+1, at+1) ) . (4)
a survey for RL的更多相关文章
- (转)Applications of Reinforcement Learning in Real World
Applications of Reinforcement Learning in Real World 2018-08-05 18:58:04 This blog is copied from: h ...
- 论文笔记系列-Neural Network Search :A Survey
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesia ...
- (zhuan) 一些RL的文献(及笔记)
一些RL的文献(及笔记) copy from: https://zhuanlan.zhihu.com/p/25770890 Introductions Introduction to reinfor ...
- A Survey of Visual Attention Mechanisms in Deep Learning
A Survey of Visual Attention Mechanisms in Deep Learning 2019-12-11 15:51:59 Source: Deep Learning o ...
- Generalizing from a Few Examples: A Survey on Few-Shot Learning 小样本学习最新综述 | 三大数据增强方法
目录 原文链接:小样本学习与智能前沿 01 Transforming Samples from Dtrain 02 Transforming Samples from a Weakly Labeled ...
- 知识图谱顶刊综述 - (2021年4月) A Survey on Knowledge Graphs: Representation, Acquisition, and Applications
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知 ...
- SharePoint 2010 Survey的Export to Spreadsheet功能怎么不见了?
背景信息: 最近用户报了一个问题,说他创建的Survey里将结果导出成Excel文件(Export to spreadsheet)的按钮不见了. 原因排查: 正常情况下,这个功能只存在于SharePo ...
- 中间值为什么为l+(r-l)/2,而不是(l+r)/2
二分法的算法中,我们看到一些代码里取中间值: MID=l+(r-l)/2; 为什么是这个呢?不就是(l+r)/2吗?为什么要多此一举呢? 其实还是有不一样的,看看他们的区别吧: l,r是指针的时候只能 ...
- SharePoint Tricks - Survey
1. SharePoint 2010中,在Survey的问题框中输入HTML代码可以用于插入图片或者链接,具体方法为: 1.1 在问题框中输入html, 1.2 在New Form和Edit Form ...
随机推荐
- 2014-10-28 NOIP模拟赛
Porble 1时间与空间之旅(tstrip.*) 题目描述 公元22××年,宇宙中最普遍的交通工具是spaceship.spaceship的出现使得星系之间的联系变得更为紧密,所以spaceship ...
- ios 自定义cell类中获取当前controller push
有时候在自定义cell的过程中,当cell中又button的时候,把button的点击时间写在cell中的时候,需要获取到cell的父视图控制器然后push,可以自建一个类,命名为: GetCurre ...
- SpringMVC 控制器写多个方法(非注解方式)
Controller类有两种方法 1,implements Controller(实现Controller接口) 2,extends MultiActionController(继承 MultiAct ...
- [Swift]LeetCode1081. 不同字符的最小子序列 | Smallest Subsequence of Distinct Characters
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- vue教程3-webpack搭建项目
vue-cli https://cli.vuejs.org/zh/ vue-cli是vue的命令行工具,对于创建项目,安装各种组件,运行项目都极为方便,是在开发vue中的必备工具 vue-cli基于n ...
- 2019湘潭校赛 E(答案区间维护)
题目传送 思路是始终维护西瓜数量的区间,即L代表目前可以达到的最少的,R是最多的,然后判断一下. #include <bits/stdc++.h> using namespace std; ...
- 学习flask的网址
学习flask的网址: http://www.bjhee.com
- NetCore1.1+Linux
NetCore1.1+Linux部署初体验 1.环境准备 Centaos7+Win10 虚拟机 Win10安装VS2017 https://www.asp.net/downloads注意勾选下.N ...
- ASM 磁盘组的的scrip
之前经常用如下方式进行查询:步骤 1 以oracle用户登录系统.步骤 2 执行如下命令改变ORACLE_SID环境变量.$ export ORACLE_SID=+ASM1[1或者2]需要通过ps - ...
- Jenkins+Gitlab+Ansible自动化部署(四)
接Jenkins+Gitlab+Ansible自动化部署(三)https://www.cnblogs.com/zd520pyx1314/p/10235394.html Jenkins应用 Jenkin ...