POJ 3373 Changing Digits 记忆化搜索
这道题我是看了别人的题解才做出来的。题意和题解分析见原文http://blog.csdn.net/lyy289065406/article/details/6698787
这里写一下自己对题目的理解。
1. 根据k的最大范围直接搜索n最后5位的方法是错误的,因为它并不能保证所求结果为最小。因为题目要求最后结果m要尽量小,而改变n的高位能够得到更小的值。k<n的限制条件表明解必然存在,而我们搜索的最大可修改位数应该和n的位数len相等。
2. 最终结果m必须满足:最高位非0且与n位数相同 (m若等于0不视为最高位为0),m能被k整除。在此基础上,还有两个条件,它们的优先级为:m与n对应位置上的数不相等的个数尽量少 > m尽量小。即最终得到的结果不一定是最小的,但一定是与n对应位置数字不相等个数最少的。这也决定了本题dfs的写法。
3. 面对大量大数取模运算,利用mod[i][j]预处理(10^i)*j模k的值,节省了大量时间。这样在dfs的过程中,改变某一位后的m%k的值也能计算出来了。搜索时为了求得的结果最小,先从m<n开始搜,然后再搜m>n。
前者有res = (m_modk - (mod[i][n[i]] - mod[i][j]) + k) % k;
后者有res = (m_modk + (mod[i][j] - mod[i][n[i]]) + k) % k;
4. flag数组的引入是为了剪枝。如果当搜索区间为[0, pos]且此时m模k为m_modk时,如果最多修改restnum位不能成功,则修改次数少于restnum时更不可能成功,因此就不用搜索下去了。flag[pos][m_modk]始终维护上述情况无法成功的最大restnum。
我的代码
#include<stdio.h>
#include<string.h>
#define maxn 103
#define mk 10003
int len, k, n[maxn], mod[maxn][];
int m[maxn], flag[maxn][mk];
char num[maxn];
void init_mod()//mod[i][j]表示(10^i)*j模k的值
{
for (int i = ; i <= ; i++)
mod[][i] = i % k;
for (int i = ; i < len; i++)
for (int j = ; j <= ; j++)
mod[i][j] = (mod[i-][j] * ) % k;
}
int dfs(int pos,int restnum,int m_modk)
{
if (!m_modk) return ;
if (!restnum || pos < ) return ;
if (restnum <= flag[pos][m_modk]) return ;//剪枝
for (int i = pos; i > -; i--)//搜索比n小的数,要尽可能小,则从高位开始
for (int j = ; j < n[i]; j++)
{
if (i == len - && !j) continue;
int res = (m_modk - (mod[i][n[i]] - mod[i][j]) + k) % k;
m[i] = j;
if (dfs(i - , restnum - , res))
return ;
m[i] = n[i];
}
for (int i = ; i <= pos; i++)//搜索比n大的数,要尽可能小,则从低位开始
for (int j = n[i] + ; j < ; j++)
{
int res = (m_modk + (mod[i][j] - mod[i][n[i]]) + k) % k;
m[i] = j;
if (dfs(i - , restnum - , res))
return ;
m[i] = n[i];
}
flag[pos][m_modk] = restnum;//能运行到这里说明搜索失败,更新剪枝数值
return ;
}
int main()
{
while (~scanf("%s%d", num, &k))
{
int n_modk = ;
len = strlen(num);
init_mod();
for (int i = ; i < len; i++)//将num反序存入整型数组
{
n[i] = num[len--i] - '';
m[i] = n[i];
n_modk = (n_modk + mod[i][ n[i] ]) % k;//计算n % k
}
memset(flag, , sizeof(flag));
int ok = ;
for (int i = ; i <= len; i++)//从小到大枚举可以修改的位数
if (dfs(len - , i, n_modk))
break;
for (int i = len - ; i > -; i--)
printf("%d", m[i]);
printf("\n");
}
return ;
}
POJ 3373 Changing Digits 记忆化搜索的更多相关文章
- poj 3373 Changing Digits (DFS + 记忆化剪枝+鸽巢原理思想)
http://poj.org/problem?id=3373 Changing Digits Time Limit: 3000MS Memory Limit: 65536K Total Submi ...
- POJ 1088 滑雪(记忆化搜索)
滑雪 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 92384 Accepted: 34948 Description ...
- POJ 1088 滑雪 DFS 记忆化搜索
http://poj.org/problem?id=1088 校运会放假继续来水一发^ ^ 不过又要各种复习,功课拉下了许多 QAQ. 还有呀,就是昨天被一个学姐教育了一番,太感谢了,嘻嘻^ ^ 好了 ...
- POJ 1088 滑雪【记忆化搜索】
题意:给出一个二维矩阵,要求从其中的一点出发,并且当前点的值总是比下一点的值大,求最长路径 记忆化搜索,首先将d数组初始化为0,该点能够到达的路径长度保存在d数组中,同时把因为路径是非负的,所以如果已 ...
- poj 1088 滑雪_记忆化搜索
题意:略 直接用记忆化搜索就行了 #include<cstdio> #include<iostream> using namespace std; int n,m; int m ...
- POJ 3373 Changing Digits 好蛋疼的DP
一開始写的高位往低位递推,发现这样有些时候保证不了第四条要求.于是又開始写高位往低位的记忆化搜索,又发现传參什么的蛋疼的要死.然后又发现高位開始的记忆化搜索就是从低位往高位的递推呀,遂过之. dp[i ...
- POJ 3176-Cow Bowling(DP||记忆化搜索)
Cow Bowling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14210 Accepted: 9432 Desc ...
- POJ 3373 Changing Digits
题目大意: 给出一个数n,求m,使得m的长度和n相等.能被k整除.有多个数符合条件输出与n在每位数字上改变次数最小的.改变次数同样的输出大小最小的. 共同拥有两种解法:DP解法,记忆化搜索的算法. ...
- HDU 1501 & POJ 2192 Zipper(dp记忆化搜索)
题意:给定三个串,问c串是否能由a,b串任意组合在一起组成,但注意a,b串任意组合需要保证a,b原串的顺序 例如ab,cd可组成acbd,但不能组成adcb. 分析:对字符串上的dp还是不敏感啊,虽然 ...
随机推荐
- Event log c++ sample.
1. Init regedit. bool InitLog( TCHAR *logName, TCHAR *sourceName, TCHAR *MessageDllName ) { // This ...
- 零基础学习 Python 之字符串
初识字符串 维基百科对于字符串的定义式:字符串是由零个或者多个字符组成的有限串行.你之前学会敲的第一行 print 代码里的 "Hello World",就是一个字符串.字符串的本 ...
- Lambda表达式的本质
//.net 1.0写法 /*delegate bool MyMethod(string s); bool myMethod(string s) { return s.IndexOf("ab ...
- shell执行mysql的脚本(包括mysql执行shell脚本)
在Shell中执行mysql的脚本,这里介绍比较容易使用的一种方法 首先写好sql的脚本,后缀为.sql,比如 sql_file.sql:内容如下 #这是SQL的脚本create table if n ...
- 如何利用c++编写不能被继承、但可以在类外定义对象的类
#include <iostream> #include<string> #include<map> #include<vector> #include ...
- MyEclipse断点调试方法
MyEclipse断点调试方法 最基本的操作是: 1, 首先在一个java文件中设断点,然后运行,当程序走到断点处就会转到debug视图下, 2, F5键与F6键均为单步调试,F5是step into ...
- [NOI2009] 植物大战僵尸 [网络流]
题面: 传送门 思路: 这道题明显可以看出来有依赖关系 那么根据依赖(保护)关系建图:如果a保护b则连边(a,b) 这样,首先所有在环上的植物都吃不到,被它们间接保护的也吃不到 把这些植物去除以后,剩 ...
- [python]做一个简单爬虫
为什么选择python,它强大的库可以让你专注在爬虫这一件事上而不是更底层的更繁杂的事 爬虫说简单很简单,说麻烦也很麻烦,完全取决于你的需求是什么以及你爬的网站所决定的,遇到的第一个简单的例子是pas ...
- C++ 静态成员的类内初始化
一般来说,关于C++类静态成员的初始化,并不会让人感到难以理解,但是提到C++ 静态成员的"类内初始化"那就容易迷糊了. 我们来看如下代码: //example.h #includ ...
- 如何用jquery获得td里边的内容
jQuery 中使用 text() 或者 html() 函数可以获取td的内容: $("td").text(); // 或者 $("td").html(); ...