HDU 5111 Alexandra and Two Trees 树链剖分 + 主席树
题意:
给出两棵树,每棵树的节点都有一个权值。
同一棵树上的节点的权值互不相同,不同树上节点的权值可以相同。
要求回答如下询问:
- \(u_1 \, v_1 \, u_2 \, v_2\):询问第一棵树的路径\(u_1 \to v_1\)的节点权值 与 第一棵树的路径\(u_2 \to v_2\)的节点权值的交集的大小。
分析:
通用的思路是这样的:首先解决线性区间上的问题,然后用树链剖分来将树上问题转化为线性问题。
考虑两个序列之间求交集:给出两个序列\(S_1, S_2\),\(S_1\)有\(n_1\)个元素\(a_1, a_2, \cdots , a_{n_1}\),\(S_2\)有\(n_2\)个元素\(b_1, b_2, \cdots , b_{n_2}\)。
每次询问\(S_1\)的子区间\([l_1,r_1]\)和\(S_2\)的子区间\(l_2,r_2\)的交集的大小。
首先定义一个函数\(f\)把\(a_1 \sim a_{n_1}\)映射为\(1 \sim n_1\)
同样地,如果\(b_i\)在\(S_1\)中出现另\(b_i=f(b_i)\),否则另\(b_i=0\)
这样就将问题转化为求\(S_2\)的子区间\([l_2,r_2]\)中值在\([l_1, r_1]\)范围中元素的个数。
因此可以用线段树来解决。
回到本问题,先把第一棵树剖分,路径\(u_1 \to v_1\)就变成若干个连续的区间。
再对第二棵树建一棵主席树,维护的是根节点到当前节点对应区间的元素的个数。
对于每个区间,查询一次在这个区间内路径\(u_2 \to v_2\)上在这个区间内的元素的个数。
处理每次询问的复杂度为\(O(log^2n)\)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
#define MP make_pair
#define F first
#define S second
using namespace std;
typedef pair<int, int> PII;
const int maxn = 100000 + 10;
struct Edge
{
int v, nxt;
Edge() {}
Edge(int v, int nxt): v(v), nxt(nxt) {}
};
struct Tree
{
int n, w[maxn];
int ecnt, head[maxn];
Edge edges[maxn];
int fa[maxn], dep[maxn], sz[maxn], son[maxn];
void init() { ecnt = 0; memset(head, -1, sizeof(head)); }
void AddEdge(int u, int v) {
edges[ecnt] = Edge(v, head[u]);
head[u] = ecnt++;
}
bool read() {
if(scanf("%d", &n) != 1) return false;
init();
for(int u = 2; u <= n; u++) {
scanf("%d", fa + u);
AddEdge(fa[u], u);
}
for(int i = 1; i <= n; i++) scanf("%d", w + i);
return true;
}
void dfs(int u) {
sz[u] = 1; son[u] = 0;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
dep[v] = dep[u] + 1;
dfs(v);
sz[u] += sz[v];
if(sz[v] > sz[son[u]]) son[u] = v;
}
}
};
Tree t1, t2;
int n1, n2;
int x[maxn];
//Heavy Light Decomposition
int tot;
int id[maxn], pos[maxn], top[maxn];
void dfs2(int u, int tp) {
id[u] = ++tot;
int p = lower_bound(x + 1, x + 1 + n1, t1.w[u]) - x;
pos[p] = tot;
top[u] = tp;
if(!t1.son[u]) return;
dfs2(t1.son[u], tp);
for(int i = t1.head[u]; ~i; i = t1.edges[i].nxt) {
int v = t1.edges[i].v;
if(v == t1.son[u]) continue;
dfs2(v, v);
}
}
vector<PII> inter;
void getIntervals(int u, int v) {
inter.clear();
while(top[u] != top[v]) {
if(t1.dep[top[u]] < t1.dep[top[v]]) swap(u, v);
inter.push_back(MP(id[top[u]], id[u]));
u = t1.fa[top[u]];
}
if(t1.dep[u] > t1.dep[v]) swap(u, v);
inter.push_back(MP(id[u], id[v]));
}
//Least Common Ancestor
int anc[maxn][20];
void preprocess() {
memset(anc, 0, sizeof(anc));
for(int i = 1; i <= n2; i++) anc[i][0] = t2.fa[i];
for(int j = 1; (1 << j) < n2; j++)
for(int i = 1; i <= n2; i++) if(anc[i][j-1])
anc[i][j] = anc[anc[i][j-1]][j-1];
}
int LCA(int u, int v) {
int log;
if(t2.dep[u] < t2.dep[v]) swap(u, v);
for(log = 0; (1 << log) < t2.dep[u]; log++);
for(int i = log; i >= 0; i--)
if(t2.dep[u] - (1<<i) >= t2.dep[v]) u = anc[u][i];
if(u == v) return u;
for(int i = log; i >= 0; i--)
if(anc[u][i] && anc[u][i] != anc[v][i])
u = anc[u][i], v = anc[v][i];
return t2.fa[u];
}
//Functional Segment Tree
const int maxnode = maxn << 5;
int sz, root[maxn];
int lch[maxnode], rch[maxnode], sum[maxnode];
int update(int pre, int L, int R, int p) {
int rt = ++sz;
sum[rt] = sum[pre] + 1;
if(L < R) {
int M = (L + R) / 2;
if(p <= M) { rch[rt] = rch[pre]; lch[rt] = update(lch[pre], L, M, p); }
else { lch[rt] = lch[pre]; rch[rt] = update(rch[pre], M+1, R, p); }
}
return rt;
}
void build(int u, int p) {
if(!t2.w[u]) root[u] = root[p];
else root[u] = update(root[p], 1, n1, t2.w[u]);
for(int i = t2.head[u]; ~i; i = t2.edges[i].nxt) {
int v = t2.edges[i].v;
build(v, u);
}
}
int query(int u, int v, int lca, int L, int R, int qL, int qR) {
if(qL <= L && R <= qR) { return sum[u] + sum[v] - sum[lca] * 2; }
int ans = 0;
int M = (L + R) / 2;
if(qL <= M) ans += query(lch[u], lch[v], lch[lca], L, M, qL, qR);
if(qR > M) ans += query(rch[u], rch[v], rch[lca], M+1, R, qL, qR);
return ans;
}
int main()
{
while(t1.read()) {
t2.read();
n1 = t1.n; n2 = t2.n;
for(int i = 1; i <= n1; i++) x[i] = t1.w[i];
sort(x + 1, x + 1 + n1);
t1.dfs(1); t2.dfs(1);
preprocess();
tot = 0; dfs2(1, 1);
for(int i = 1; i <= n2; i++) {
int p = lower_bound(x + 1, x + 1 + n1, t2.w[i]) - x;
if(p < 1 || p > n2 || x[p] != t2.w[i]) t2.w[i] = 0;
else t2.w[i] = pos[p];
}
sz = 1;
build(1, 0);
int q; scanf("%d", &q);
while(q--) {
int u1, v1, u2, v2;
scanf("%d%d%d%d", &u1, &v1, &u2, &v2);
getIntervals(u1, v1);
int ans = 0;
int lca = LCA(u2, v2);
for(PII a : inter) {
if(a.F <= t2.w[lca] && t2.w[lca] <= a.S) ans++;
ans += query(root[u2], root[v2], root[lca], 1, n1, a.F, a.S);
}
printf("%d\n", ans);
}
}
return 0;
}
HDU 5111 Alexandra and Two Trees 树链剖分 + 主席树的更多相关文章
- dfs序+主席树 或者 树链剖分+主席树(没写) 或者 线段树套线段树 或者 线段树套splay 或者 线段树套树状数组 bzoj 4448
4448: [Scoi2015]情报传递 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 588 Solved: 308[Submit][Status ...
- Codechef FIBTREE 树链剖分 主席树 LCA 二次剩余 快速幂
原文链接https://www.cnblogs.com/zhouzhendong/p/CC-FIBTREE.html 题目传送门 - CC-FIBTREE 题意 给定一个有 $n$ 个节点,初始点权都 ...
- BZOJ1146 [CTSC2008]网络管理Network 树链剖分 主席树 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1146 题意概括 在一棵树上,每一个点一个权值. 有两种操作: 1.单点修改 2.询问两点之间的树链 ...
- bzoj 4448 [Scoi2015]情报传递 (树链剖分+主席树)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4448 题面: Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络 ...
- BZOJ 4448: [Scoi2015]情报传递 树链剖分 主席树
4448: [Scoi2015]情报传递 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4448 Description 奈特公司是一个巨 ...
- [GDOI2016][树链剖分+主席树]疯狂动物城
题面 Description Nick 是只在动物城以坑蒙拐骗为生的狐狸,儿时受到偏见的伤害,放弃了自己的理想.他被兔子 Judy 设下圈套,被迫与她合作查案,而卷入意想不到的阴谋,历尽艰险后成为搭档 ...
- BZOJ3531 SDOI2014 旅行 - 树链剖分,主席树
题意:给定一棵树,树上每个点有权值和类型.支持:修改某个点的类型:修改某个点的权值:询问某条链上某个类型的点的和/最大值.点数/类型数/询问数<=100000. 分析: 树链剖分,对每个类型的点 ...
- 5.15 牛客挑战赛40 E 小V和gcd树 树链剖分 主席树 树状数组 根号分治
LINK:小V和gcd树 时限是8s 所以当时好多nq的暴力都能跑过. 考虑每次询问暴力 跳父亲 这样是nq的 4e8左右 随便过. 不过每次跳到某个点的时候需要得到边权 如果直接暴力gcd的话 nq ...
- BZOJ4012 HNOI2015开店(树链剖分+主席树)
考虑这样一个问题:一棵树初始全是白点,有两种操作:把一个点染黑:询问某点到所有黑点的距离之和. 注意到树上两点x和y的距离为depth[x]+depth[y]-depth[lca(x,y)]*2.要求 ...
随机推荐
- 数据库2_sqlHelper
封装一个受影响的行 public static int ExcuteNonQuery(string sqlText,params SqlParameter[] parameters) { using ...
- 在使用添加按钮给table插入新的一行时遇见的问题总结及处理方法
添加按钮的功能:点击添加按钮之后完成添加新的一行. 遇见的问题:当多次点击添加按钮生成新的多行之后,生成的每行内部按钮的保存按钮点击事件出现最晚添加的一行的行内保存点击事件执行一次,倒数第二次添加的行 ...
- iPad开发简单介绍
iPad开发最大的不同在于iPhone的就是屏幕控件的适配,以及横竖屏的旋转. Storyboard中得SizeClass的横竖屏配置,也不支持iPad开发. 1.在控制器中得到设备的旋转方向 在 i ...
- asterisk-java ami2 事件监听
asteriskServer文章1提到啦怎么获取,就不解释 asteriskServer.addChainListener(new AsteriskeventListenerInit());//整个服 ...
- HTML_6 (表单应用)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- SC || Chapter7 健壮性和正确性
finally中语句不论有无异常都执行 若子类重写了父类方法,父类方法没有抛出异常,子类应自己处理全部异常而不再传播:子类从父类继承的方法不能增加或更改异常 判断checked和unchecked: ...
- runtime实践之Method Swizzling
利用 Objective-C 的 Runtime 特性,我们可以给语言做扩展,帮助解决项目开发中的一些设计和技术问题.这一篇,我们来探索一些利用 Objective-C Runtime 的黑色技巧.这 ...
- 沙盒(SandBox)
iOS 应用沙盒机制就是指 iOS 应用程序只能在为该程序创建的文件系统中读取文件,不可以去其它地方访问,此区域被成为沙盒,所以所有的非代码文件都要保存在此,例如图像,图标,声音,映像,属性列表,文本 ...
- 浅谈JavaScript中的正则表达式(适用初学者观看)
浅谈JavaScript中的正则表达式 1.什么是正则表达式(RegExp)? 官方定义: 正则表达式是一种特殊的字符串模式,用于匹配一组字符串,就好比用模具做产品,而正则就是这个模具,定义一种规则去 ...
- 原型与原型继承demo
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...