题面

传送门

思路

把要求的公式列出来:

$E_i=\frac{F_i}{q_i}=\sum_{j=1}i\frac{q_j}{\left(i-j\right)2}-\sum_{j=i+1}n\frac{q_j}{\left(i-j\right)2}$

令$x_i=\frac1{i^2}$,那么

$E_i=\sum_{j=1}iq_jx_{i-j}-\sum_{j=i+1}nq_jx_{j-i}$

那我们再令$p_i=q_{n-i+1}$,那么

$E_i=\sum_{j=1}iq_jx_{i-j}-\sum_{j=i+1}np_{n-j}x_{j-i}$

此时我们发现式子的左侧和右侧都是一个卷积的形式

那么,我们就可以用FFT来维护这个过程了

将数列$q_i$,$p_i$,$x_i$作为多项式$A$,$B$,$C$的系数

将他们用fft乘起来,得到的$A\ast C$,$B\ast C$的系数做差,就是$E_i$的值

Code:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
struct complex{
double x,y;
complex(double xx=0,double yy=0){x=xx;y=yy;}
complex operator +(const complex &b){return complex(b.x+x,b.y+y);}
complex operator -(const complex &b){return complex(-b.x+x,-b.y+y);}
complex operator *(const complex &b){return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
}A[410010],B[410010],C[410010];
const double pi=acos(-1.0);
int n,limit=1,cnt=0,r[410010];
void fft(complex *a,double type){
int i,mid,j,k,R;complex w,wn,x,y;
for(i=0;i<limit;i++) if(i<r[i]) std::swap(a[i],a[r[i]]);
for(mid=1;mid<limit;mid<<=1){
wn=complex(cos(pi/mid),type*sin(pi/mid));
for(R=mid<<1,j=0;j<limit;j+=R){
w=complex(1,0);
for(k=0;k<mid;k++,w=w*wn){
x=a[j+k];y=w*a[j+k+mid];
a[j+k]=x+y;
a[j+k+mid]=x-y;
}
}
}
}
int main(){
scanf("%d",&n);int i;
for(i=1;i<=n;i++) scanf("%lf",&A[i].x),B[n+1-i].x=A[i].x;
for(i=1;i<=n;i++) C[i].x=(1.0/double(i))/double(i); while(limit<=(n<<1)) limit<<=1,cnt++;
for(i=0;i<limit;i++) r[i]=((r[i>>1]>>1)|((i&1)<<(cnt-1))); fft(A,1);fft(B,1);fft(C,1);
for(i=0;i<=limit;i++) A[i]=A[i]*C[i],B[i]=B[i]*C[i];
fft(A,-1);fft(B,-1);
for(i=0;i<=limit;i++) A[i].x/=limit,B[i].x/=limit; for(i=1;i<=n;i++) printf("%.4lf\n",-B[n+1-i].x+A[i].x);
}

[ZJOI2014][bzoj3527]力 [FFT]的更多相关文章

  1. 「ZJOI2014」力 FFT

    FFTl裸题,小于的部分直接做,大于的部分倒序后再做就行了. #include <bits/stdc++.h> using namespace std; const int MAXN = ...

  2. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

  3. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  4. 【bzoj3527】[Zjoi2014]力 FFT

    2016-06-01  21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...

  5. [BZOJ3527][ZJOI2014]力 FFT+数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...

  6. BZOJ3527[Zjoi2014]力——FFT

    题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...

  7. 【BZOJ-3527】力 FFT

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1544  Solved: 89 ...

  8. P3338 [ZJOI2014]力(FFT)

    题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...

  9. BZOJ_3527_[ZJOI2014]_力_(FFT+卷积)

    描述 题面: http://wenku.baidu.com/link?url=D2ORnA9xjgSxa2GlYLB7gGiYgBcXsy-Aw0kVYTjTE-iYhH1s7h8xXGmnaMwl3 ...

随机推荐

  1. CUDA:Supercomputing for the Masses (用于大量数据的超级计算)-第一节

    原文链接 第一节 CUDA 让你可以一边使用熟悉的编程概念,一边开发可在GPU上运行的软件. Rob Farber 是西北太平洋国家实验室(Pacific Northwest National Lab ...

  2. tomcat服务器用Servlet类查找磁盘文件上的Json信息,如果匹配则在浏览器上显示出该条内容的全部信息

    package com.swift; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.IOE ...

  3. 【转】【win网络编程】socket中的recv阻塞和select的用法

    在编写ftp客户端程序时,在联通后使用recv函数进行接收欢迎信息时,需要申请内存进行接收数据保存,一次读取成功,但是由于一个随机的ftp服务端在说,欢迎信息的大小是不知道的,所以在尝试使用死循环,在 ...

  4. jpeg解码库使用实例

    jpeg库下载地址: http://www.ijg.org/ 交叉编译三部曲: A ./configure --host=arm-linux-gcc --prefix=/home/flying/jpe ...

  5. [转载]win10(64bit)上安装MySQL-python

    https://blog.csdn.net/builder_taoge/article/details/78292302 https://blog.csdn.net/qq_26808915/artic ...

  6. 12.1.VUE学习之-循环li,if判断示例讲解class中应用表达式

    功能: 当点击按键时,改变当前循环数组里的status里的值, 判断staus里的当前的值来,切换显示 删除 和 恢复 的按钮 判断staus里的当前的值来改变span标签里的字体颜色样式 <! ...

  7. Python知识点进阶——细节问题

    int()强制转换浮点数 在int()的强制转换浮点数时候,不管是正数还是负数,只取整数部分. 注意:这里不是向上或者向下取整,也不是四舍五入. 无限递归 递归是为了将问题简化为更小规模的同类型问题, ...

  8. python简单试题4

    ( ps : 题目中用到的一些random函数在最后末尾处有介绍)  1,在屏幕上显示跑马灯文字 import os # 调用os模块 import time # 调用时间模块 def main(): ...

  9. python2与python3的区别,以及注释、变量、常量与编码发展

    python2与python3的区别 宏观上: python2:源码不统一,混乱,重复代码太多. python3:源码统一标准,能去除重复代码. 编码上: python2:默认编码方式为ASCII码. ...

  10. (HTML)A标签伪元素选择器的继承关系

    ①如果a:link{}也存在,那么不管a{}放到哪里,a{}和a:link{}冲突的属性都会采用a:link{}的,不冲突的属性若存在a{}中,会被a:link{}. a:visited{} .a:h ...