Nature Reserve
There is a forest that we model as a plane and live nn rare animals. Animal number ii has its lair in the point (xi,yi). In order to protect them, a decision to build a nature reserve has been made.
The reserve must have a form of a circle containing all lairs. There is also a straight river flowing through the forest. All animals drink from this river, therefore it must have at least one common point with the reserve. On the other hand, ships constantly sail along the river, so the reserve must not have more than one common point with the river.
For convenience, scientists have made a transformation of coordinates so that the river is defined by y=0. Check whether it is possible to build a reserve, and if possible, find the minimum possible radius of such a reserve.
The first line contains one integer n (1≤n≤1e5) — the number of animals.
Each of the next n lines contains two integers xi, yi (−1e7≤xi,yi≤1e7) — the coordinates of the i-th animal's lair. It is guaranteed that yi≠0. No two lairs coincide.
If the reserve cannot be built, print −1. Otherwise print the minimum radius. Your answer will be accepted if absolute or relative error does not exceed 1e−6.
Formally, let your answer be aa, and the jury's answer be bb. Your answer is considered correct if |a−b| / max(1,|b|)≤1e−6.
1
0 1
0.5
3
0 1
0 2
0 -3
-1
2
0 1
1 1
0.625
In the first sample it is optimal to build the reserve with the radius equal to 0.5 and the center in (0, 0.5).
In the second sample it is impossible to build a reserve.
In the third sample it is optimal to build the reserve with the radius equal to 5/8 and the center in (1/2, 5/8).
题目链接:http://codeforces.com/contest/1059/problem/D
题意:有二维平面上n个点,能否找到一个半径最小的与x轴相切的圆,覆盖全部的点。
分析:首先二分答案,则题目转化为判断半径为定值的与x轴相切的圆能否覆盖全部的点。如果点在x轴上下都有分布,则找不到这样的圆。然后发现既然圆的半径为定值且与x轴相切,则它的圆心是在一条直线上,然后这个圆要覆盖某个点,则以这个点为圆心,半径为r的圆一定也能覆盖这个圆心。再推广发现圆心的那条直线上只有一段区间满足能覆盖该点。于是把全部的点在直线上对应的区间求出来,求出区间交集即可判断这样的圆是否存在。
官方题解:http://codeforces.com/blog/entry/62238
#include<bits/stdc++.h>
#define N 105000
const double INF =1e18;
using namespace std;
struct ss
{
double x,y;
};
ss arr[N];
int n; int check(double r)
{
double cross_l=-INF,cross_r=INF; for(int i=;i<=n;i++)
{
if(arr[i].y>*r)return ; double dis=sqrt(arr[i].y*r*2.0-arr[i].y*arr[i].y);
double nowl=arr[i].x-dis,nowr=arr[i].x+dis; cross_l=max(cross_l,nowl);
cross_r=min(cross_r,nowr);
if(cross_l>cross_r)return ;
}
return ;
} int main()
{
double t;
scanf("%d",&n);
scanf("%lf %lf",&arr[].x,&arr[].y); if(arr[].y>)t=;
else
t=-;
arr[].y*=t; for(int i=;i<=n;i++)
{
scanf("%lf %lf",&arr[i].x,&arr[i].y);
if(arr[i].y*t<)
{
printf("-1\n");
return ;
}
arr[i].y*=t;
} double l=,r=INF;
double ans; int tot=;
while(l<r&&tot--)
{
double mid=(l+r)/;
if(check(mid))
{
ans=mid-1e-;
r=mid;
}
else
l=mid+1e-;
}
printf("%f",ans);
return ;
}
Nature Reserve的更多相关文章
- Codeforces Round #514 (Div. 2):D. Nature Reserve(二分+数学)
D. Nature Reserve 题目链接:https://codeforces.com/contest/1059/problem/D 题意: 在二维坐标平面上给出n个数的点,现在要求一个圆,能够容 ...
- E - Nature Reserve CodeForces - 1059D
传送门 There is a forest that we model as a plane and live nn rare animals. Animal number iihas its lai ...
- [CodeForces]1059D Nature Reserve
大意:给你一个平面上N(N<=100000)个点,问相切于x轴的圆,将所有的点都覆盖的最小半径是多少. 计算几何???Div2的D题就考计算几何???某人昨天上课才和我们说这种计算几何题看见就溜 ...
- CF1059D Nature Reserve
原题链接 网络不好的可以到洛谷上去QwQ 题目大意 有N个点,求与y=0相切的,包含这N个点的最小圆的半径 输入输出样例 输入: 2 0 1 1 1 输出 0.625 感觉最多是蓝题难度? 首先无解的 ...
- D - Nature Reserve(cf514,div2)
题意:给出n(n<=1e5)个点,求一个最小的圆,与x轴相切,并且包含这n个点 思路:我第一想到的是,这个圆一定会经过一个点,再根据与x轴相切,我们可以找到最小的圆,让它包含其余的点,但是如何判 ...
- Codeforces Round #514 (Div. 2) D. Nature Reserve
http://codeforces.com/contest/1059/problem/D 最大值: 最左下方和最右下方分别有一个点 r^2 - (r-1)^2 = (10^7)^2 maxr<0 ...
- cf1059D. Nature Reserve(三分)
题意 题目链接 Sol 欲哭无泪啊qwq....昨晚一定是智息了qwq 说一个和标算不一样做法吧.. 显然\(x\)轴是可以三分的,半径是可以二分的. 恭喜你获得了一个TLE的做法.. 然后第二维的二 ...
- CF1059D Nature Reserve(二分)
简洁翻译: 有N个点,求与y=0相切的,包含这N个点的最小圆的半径 题解 二分半径右端点开小了结果交了二十几次都没A……mmp…… 考虑一下,显然这个半径是可以二分的 再考虑一下,如果所有点都在y轴同 ...
- [ CodeForces 1059 D ] Nature Reserve
\(\\\) \(Description\) 你现在有\(N\)个分布在二维平面上的整点\((x_i,y_i)\),现在需要你找到一个圆,满足: 能够覆盖所有的给出点 与\(x\)轴相切 现在需要你确 ...
随机推荐
- SOA架构设计案例分析
转载自:https://www.jdon.com/soa.html 首先Martin Fowler提出SOA歧义Service Oriented Ambiguity,认为"什么是SOA&qu ...
- Springboot 入门创建hello world1!
1.首先使用工具是Eclipse,安装插件,点击“Help”-“Eclipse Marketplace...”, 一步步直接Ok,等待安装完成 2.创建Springboot项目 到此 就创建成功了 3 ...
- Shell脚本使用汇总整理——文件夹及子文件备份脚本
Shell脚本使用汇总整理——文件夹及子文件备份脚本 Shell脚本使用的基本知识点汇总详情见连接: https://www.cnblogs.com/lsy-blogs/p/9223477.html ...
- Ajax基础知识梳理
Ajax用一句话来说就是无须刷新页面即可从服务器取得数据.注意,虽然Ajax翻译过来叫异步JavaScript与XML,但是获得的数据不一定是XML数据,现在服务器端返回的都是JSON格式的文件. 完 ...
- HTML5/CSS3 第三章页面布局
页面布局 1 页面组成 2 布局相关的标签 <div></div> 定义文档中的分区或节 <span></span> 这是一个行内元素,没有任何意义 & ...
- php v8js
本文整理自大神 Corz 1.php56 /datas/soft/php56/bin/php -v PHP (cli) #https://blog.csdn.net/lzm198707/article ...
- 29.VUE学习之--键盘事件.键盘修饰符的实例讲解
键盘事件 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...
- Android四大基本组件介绍及生命周期
Android四大基本组件分别是Activity,Service服务,Content Provider内容提供者,BroadcastReceiver广播接收器. 一.了解四大基本组件 Activity ...
- day 44 前端HTML
前端HTML HTML介绍 Web服务本质 import socket sk = socket.socket() sk.bind(("127.0.0.1", 8080)) sk ...
- 笔记-数据库-redis
笔记-数据库-redis 1. redis简介 Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件. 它支持多种类型的数据结构,如 stri ...