【转】C语言中整型运算取Ceiling问题
原文:http://blog.csdn.net/laciqs/article/details/6662472
-------------------------------------------------------
此题来自:《Linux C编程一站式学习》
假设变量x和n是两个正整数,我们知道x/n这个表达式的结果要取Floor,例如x是17,n是4,则结果是4。如果希望结果取Ceiling应该怎么写表达式呢?例如x是17,n是4,则结果是5;x是16,n是4,则结果是4。
网上对这道题只有答案和证明,我们虽然能证明答案的正确性却不知道答案是如何得出的,这篇文章填补了这一空白。
一位高手的推导(根据他的原文整理的):
设x=kn+b,b∈(0, n)且b∈Z,当b=0时,
(x+z)/n=k,即(kn+z)/n=k,根据题目要求,z最大为n-1;
当b≠0时,(x+z)/n=k+1,即(kn+b+z)/n=k+1,也就是(b+z)/n=1,由于b∈(0, n)且b∈Z,故b可取最小值1,此时z为n-1,当b取2时,z为n-2……当b=n-1时,z=1,可见不考虑特殊情况时,z最大为n-1;而当b=n-1时,z若为n-1,则(b+z)/n=2-2/n<2,也就是(kn+b+z)/n<k+2,依然可以取Ceiling。所以无论怎样z都可为n-1,即z=n-1。
所以这个表达式应该写为:(x+n-1)/n
而且从上面的推导过程可以看出,对于x%n=n-1的情况,只要再给x加上一个1就可以取Ceiling,比如19%4=3,(19+1)/4=5。
【转】C语言中整型运算取Ceiling问题的更多相关文章
- C++等语言中整型int等的取值范围计算方式
举short为例说明 如果以最高位为符号位,二进制原码最大为0111111111111111=2的15次方减1=32767.最小为1111111111111111=-2的15次方减1=-32767此时 ...
- C语言的整型溢出问题
整型溢出有点老生常谈了,bla, bla, bla… 但似乎没有引起多少人的重视.整型溢出会有可能导致缓冲区溢出,缓冲区溢出会导致各种黑客攻击,比如最近OpenSSL的heartbleed事件,就是一 ...
- 基于 CPython 解释器,为你深度解析为什么Python中整型不会溢出
前言 本次分析基于 CPython 解释器,python3.x版本 在python2时代,整型有 int 类型和 long 长整型,长整型不存在溢出问题,即可以存放任意大小的整数.在python3后, ...
- SQL SERVER的整型运算,让人大吃一惊
SQL SERVER的整型运算,让人大吃一惊好比下面代码:DECLARE @i INT = 50;DECLARE @dec DECIMAL(18,4);SET @dec = @i / 100;SELE ...
- C语言中的位运算和逻辑运算
这篇文章来自:http://blog.csdn.net/qp120291570/article/details/8708286 位运算 C语言中的位运算包括与(&),或(|),亦或(^),非( ...
- C#中整型数据类型
C#中整型数据类型byte是8位的无符号整数,可是它表示的值的范围是0-255才3位啊怎么说是8位啊?谁能帮我解答 全部答案 八位二进制.0000 0000到1111 1111相当于十进制0-25 ...
- 【C语言】整型在内存中的存储
整型在内存中的存储 1.整型的归类 char short int long 以上都分为有符号(signed)与无符号(unsigned)的类型 2.原码.反码和补码 2.1 定义 计算机在表示一个数字 ...
- C语言中的位运算的技巧
一.位运算实例 1.用一个表达式,判断一个数X是否是2的N次方(2,4,8,16.....),不可用循环语句. X:2,4,8,16转化成二进制是10,100,1000,10000.如果减1则变成01 ...
- 【CSAPP笔记】2. 整型运算
现在想补补推荐这本书的理由. Most books on systems-computer architecture, compilers, operating systems, and networ ...
随机推荐
- Linux基础学习-数据备份工具Rsync
数据备份工具rsync 作为一个系统管理员,数据备份是非常重要的,如果没有做好备份策略,磁盘损坏了,那么你的数据将全部丢失,所以在日常的维护工作中,一定要时刻牢记给数据做备份. rsync不仅可以可以 ...
- 纯 CSS 创作一个表达怀念童年心情的条纹彩虹心特效
效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/QxbmxJ 可交互视频教 ...
- 前端,基础选择器,嵌套关系.display属性,盒模型
基础选择器 1.统配选择器 控制html,body及body内跟显示相关的标签 *{ width:80px; height:80px; background-color:red; } 2.类选择器 以 ...
- 牛客网暑期ACM多校训练营(第六场) I Team Rocket(线段树)
题意: 给定n个区间, m次询问, 每次询问给一个点, 问这个点在哪些区间内, 然后删掉这些区间. 分析: 将n个区间按L大小升序排列, 然后将这些区间视为点构建一棵n个点的线段树, 树的节点记录这个 ...
- 洛谷P3961 图的遍历
题目来源 做这道题的方法不少. 在这里我只提一种 就是大法师. 可以采用反向建边,从最大的点开始dfs 我们考虑每次从所剩点中最大的一个点出发,我们暂且称它为i,而凡是i这个点所能到达的点,可以到达的 ...
- 【07】像使用命令行一样使用 GitHub URL
[07] 像使用命令行一样使用 GitHub URL 既然说到了 URL,那么久接着聊一下.使用 UI 浏览 GitHub 很 方面也很好,不过很多时候最快的方式是使用 URL 来浏览.举个例子,如果 ...
- unittest和pytest对比
一.用例编写规则 1.unittest提供了test cases.test suites.test fixtures.test runner相关的类,让测试更加明确.方便.可控.使用unittest编 ...
- 神经网络的BP推导过程
神经网络的BP推导过程 下面我们从一个简单的例子入手考虑如何从数学上计算代价函数的梯度,考虑如下简单的神经网络,该神经网络有三层神经元,对应的两个权重矩阵,为了计算梯度我们只需要计算两个偏导数即可: ...
- 九度oj 题目1017:还是畅通工程
题目描述: 某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离.省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可 ...
- 安卓Toast实现
代码改变世界 Toast实现显示 // 第一个参数:当前的上下文环境.可用getApplicationContext()或this // 第二个参数:要显示的字符串.也可是R.string中字符串ID ...