题目链接 Turning in Homework

考虑区间DP

$f[i][j][0]$为只考虑区间$[i, j]$且最后在$a[i]$位置交作业的答案。

$f[i][j][1]$为只考虑区间$[i, j]$且最后在$a[j]$位置交作业的答案。

首先对$a[i]$升序排序(位置第一关键字,时间第二关键字)

然后就是区间DP了

$f[i][j]$可以从$f[i][j + 1]$, $f[i - 1][j]$推过来。

$f[i][j][0] = min(f[i][j][0], max(f[i][j + 1][1] + a[j + 1].fi - a[i].fi, a[i].se))$

$f[i][j][0] = min(f[i][j][0], max(f[i - 1][j][0] + a[i].fi - a[i - 1].fi, a[i].se))$

$f[i][j][1] = min(f[i][j][1], max(f[i - 1][j][0] + a[j].fi - a[i - 1].fi, a[j].se));$

$f[i][j][1] = min(f[i][j][1], max(f[i][j + 1][1] + a[j + 1].fi - a[j].fi, a[j].se));$

其中$fi$代表位置,$se$代表时间。

最后的答案为$min{min(f[i][i][0], f[i][i][1]) + abs(a[i].fi - B)}$

$B$位规定的终点。

时间复杂度$O(n^{2})$

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second typedef long long LL; const int N = 1010;
int n, m, ed, ans;
pair <int, int> a[N];
int f[N][N][2]; int main(){ scanf("%d%d%d", &n, &m, &ed);
rep(i, 1, n) scanf("%d%d", &a[i].fi, &a[i].se);
sort(a + 1, a + n + 1); f[1][n][0] = max(a[1].fi, a[1].se);
f[1][n][1] = max(a[n].fi, a[n].se); dec(d, n - 1, 1){
rep(i, 1, n - d + 1){
int j = i + d - 1;
f[i][j][0] = 1 << 30;
if (j < n) f[i][j][0] = min(f[i][j][0], max(f[i][j + 1][1] + a[j + 1].fi - a[i].fi, a[i].se));
if (i > 1) f[i][j][0] = min(f[i][j][0], max(f[i - 1][j][0] + a[i].fi - a[i - 1].fi, a[i].se)); f[i][j][1] = 1 << 30;
if (i > 1) f[i][j][1] = min(f[i][j][1], max(f[i - 1][j][0] + a[j].fi - a[i - 1].fi, a[j].se));
if (j < n) f[i][j][1] = min(f[i][j][1], max(f[i][j + 1][1] + a[j + 1].fi - a[j].fi, a[j].se));
}
} ans = 1 << 30;
rep(i, 1, n) ans = min(ans, min(f[i][i][0], f[i][i][1]) + abs(a[i].fi - ed));
printf("%d\n", ans);
return 0;
}

POJ 1991 Turning in Homework(区间DP)的更多相关文章

  1. poj 1991 Turning in Homework dp

    这个可以证明必须从两边的任务开始交起,因为中间交的任务可以后面经过的时候再交,所以就变成了一个n*n的dp. #include <iostream> #include <cstdio ...

  2. POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)

    题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...

  3. POJ 3186Treats for the Cows(区间DP)

    题目链接:http://poj.org/problem?id=3186 题目大意:给出的一系列的数字,可以看成一个双向队列,每次只能从队首或者队尾出队,第n个出队就拿这个数乘以n,最后将和加起来,求最 ...

  4. POJ 2955:Brackets(区间DP)

    http://poj.org/problem?id=2955 题意:给出一串字符,求括号匹配的数最多是多少. 思路:区间DP. 对于每个枚举的区间边界,如果两边可以配对成括号,那么dp[i][j] = ...

  5. POJ 1191 棋盘分割(区间DP)题解

    题意:中文题面 思路:不知道直接暴力枚举所有情况行不行... 我们可以把答案转化为 所以答案就是求xi2的最小值,那么我们可以直接用区间DP来写.设dp[x1][y1][x2][y2][k]为x1 y ...

  6. Poj 1651 Multiplication Puzzle(区间dp)

    Multiplication Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10010   Accepted: ...

  7. POJ 1651 Multiplication Puzzle (区间DP,经典)

    题意: 给出一个序列,共n个正整数,要求将区间[2,n-1]全部删去,只剩下a[1]和a[n],也就是一共需要删除n-2个数字,但是每次只能删除一个数字,且会获得该数字与其旁边两个数字的积的分数,问最 ...

  8. POJ 1141 Brackets Sequence (区间DP)

    Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...

  9. poj 2955 Brackets 括号匹配 区间dp

    题意:最多有多少括号匹配 思路:区间dp,模板dp,区间合并. 对于a[j]来说: 刚開始的时候,转移方程为dp[i][j]=max(dp[i][j-1],dp[i][k-1]+dp[k][j-1]+ ...

随机推荐

  1. 洛谷 P1019 单词接龙 (DFS)

    题目传送门 当时一看到这题,蒟蒻的我还以为是DP,结果发现标签是搜索-- 这道题的难点在于思路和预处理,真正的搜索实现起来并不难.我们可以用一个贪心的思路,开一个dic数组记录每个单词的最小重复部分, ...

  2. shell脚本,提取ip地址和子网掩码,和查外网ip地址信息。

        #提取IP地址和子网掩码 [root@localhost ~]# ifconfig eth0|grep 'inet addr'|awk -F'[ :]+' '{print $4"/& ...

  3. 初遇Linux

    Ctrl+Alt+(F1-F6):切换虚拟终端 Ctrl+Alt:鼠标切换界面 $:普通用户登录后系统的提示符 #:root用户登录后系统的提示符 Linux命令 exit  用于退出目前的shell ...

  4. 《嵌入式linux应用程序开发标准教程》笔记——9.多线程编程

    线程是轻量级进程,创建线程的开销要比进程小得多,在大型程序中应用广泛. 9.1 线程概述 进程包含自己的代码.数据.堆栈.资源等等,创建和切换的开销比较大: 线程是轻量级的进程,调度的最小单元,同一个 ...

  5. PyQt5(2)、垃圾分类小程序(2)——初代窗口程序可执行文件

    又是一天时间(又没做大作业).今天的心路历程:(1)前端后端怎么连接?(2)后端数据库插数据(3)完全没用上之前的字典反查法(4)突然发现面向对象编程其实很好用,甚至越用越上瘾(5)QLineEdit ...

  6. cs229_part4

    又到了一节很重要的课,因为这个学习理论是从统计角度为机器学习算法提供了一个理论基础. 学习理论 问题背景 先回顾一下我们第一节课提到的机器学习的组成: 第一节课只是简单的提了一下,现在我们要真正来分析 ...

  7. BZOJ 4557: [JLoi2016]侦察守卫

    题目大意:每个点有一个放置守卫的代价,同时每个点放置守卫能覆盖到的距离都为d,问覆盖所有给定点的代价是多少. 题解: 树形DP f[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上覆盖y层的最 ...

  8. 163 AJAX

    // 163 AJAX Tab // update 2006.10.18 // 增加鼠标延迟感应特性. // update 2006.10.8 // A 标签 href 属性将保持原有HTML功能.增 ...

  9. loj2002 「SDOI2017」序列计数

    水题 #include <iostream> #include <cstring> #include <cstdio> using namespace std; t ...

  10. 原生js实现 table表格列宽拖拽

    查看效果 <!DOCTYPE html> <html> <head> <meta charset="gbk"> <title& ...