POJ 1991 Turning in Homework(区间DP)
题目链接 Turning in Homework
考虑区间DP
$f[i][j][0]$为只考虑区间$[i, j]$且最后在$a[i]$位置交作业的答案。
$f[i][j][1]$为只考虑区间$[i, j]$且最后在$a[j]$位置交作业的答案。
首先对$a[i]$升序排序(位置第一关键字,时间第二关键字)
然后就是区间DP了
$f[i][j]$可以从$f[i][j + 1]$, $f[i - 1][j]$推过来。
即
$f[i][j][0] = min(f[i][j][0], max(f[i][j + 1][1] + a[j + 1].fi - a[i].fi, a[i].se))$
$f[i][j][0] = min(f[i][j][0], max(f[i - 1][j][0] + a[i].fi - a[i - 1].fi, a[i].se))$
$f[i][j][1] = min(f[i][j][1], max(f[i - 1][j][0] + a[j].fi - a[i - 1].fi, a[j].se));$
$f[i][j][1] = min(f[i][j][1], max(f[i][j + 1][1] + a[j + 1].fi - a[j].fi, a[j].se));$
其中$fi$代表位置,$se$代表时间。
最后的答案为$min{min(f[i][i][0], f[i][i][1]) + abs(a[i].fi - B)}$
$B$位规定的终点。
时间复杂度$O(n^{2})$
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second typedef long long LL; const int N = 1010;
int n, m, ed, ans;
pair <int, int> a[N];
int f[N][N][2]; int main(){ scanf("%d%d%d", &n, &m, &ed);
rep(i, 1, n) scanf("%d%d", &a[i].fi, &a[i].se);
sort(a + 1, a + n + 1); f[1][n][0] = max(a[1].fi, a[1].se);
f[1][n][1] = max(a[n].fi, a[n].se); dec(d, n - 1, 1){
rep(i, 1, n - d + 1){
int j = i + d - 1;
f[i][j][0] = 1 << 30;
if (j < n) f[i][j][0] = min(f[i][j][0], max(f[i][j + 1][1] + a[j + 1].fi - a[i].fi, a[i].se));
if (i > 1) f[i][j][0] = min(f[i][j][0], max(f[i - 1][j][0] + a[i].fi - a[i - 1].fi, a[i].se)); f[i][j][1] = 1 << 30;
if (i > 1) f[i][j][1] = min(f[i][j][1], max(f[i - 1][j][0] + a[j].fi - a[i - 1].fi, a[j].se));
if (j < n) f[i][j][1] = min(f[i][j][1], max(f[i][j + 1][1] + a[j + 1].fi - a[j].fi, a[j].se));
}
} ans = 1 << 30;
rep(i, 1, n) ans = min(ans, min(f[i][i][0], f[i][i][1]) + abs(a[i].fi - ed));
printf("%d\n", ans);
return 0;
}
POJ 1991 Turning in Homework(区间DP)的更多相关文章
- poj 1991 Turning in Homework dp
这个可以证明必须从两边的任务开始交起,因为中间交的任务可以后面经过的时候再交,所以就变成了一个n*n的dp. #include <iostream> #include <cstdio ...
- POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)
题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...
- POJ 3186Treats for the Cows(区间DP)
题目链接:http://poj.org/problem?id=3186 题目大意:给出的一系列的数字,可以看成一个双向队列,每次只能从队首或者队尾出队,第n个出队就拿这个数乘以n,最后将和加起来,求最 ...
- POJ 2955:Brackets(区间DP)
http://poj.org/problem?id=2955 题意:给出一串字符,求括号匹配的数最多是多少. 思路:区间DP. 对于每个枚举的区间边界,如果两边可以配对成括号,那么dp[i][j] = ...
- POJ 1191 棋盘分割(区间DP)题解
题意:中文题面 思路:不知道直接暴力枚举所有情况行不行... 我们可以把答案转化为 所以答案就是求xi2的最小值,那么我们可以直接用区间DP来写.设dp[x1][y1][x2][y2][k]为x1 y ...
- Poj 1651 Multiplication Puzzle(区间dp)
Multiplication Puzzle Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10010 Accepted: ...
- POJ 1651 Multiplication Puzzle (区间DP,经典)
题意: 给出一个序列,共n个正整数,要求将区间[2,n-1]全部删去,只剩下a[1]和a[n],也就是一共需要删除n-2个数字,但是每次只能删除一个数字,且会获得该数字与其旁边两个数字的积的分数,问最 ...
- POJ 1141 Brackets Sequence (区间DP)
Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...
- poj 2955 Brackets 括号匹配 区间dp
题意:最多有多少括号匹配 思路:区间dp,模板dp,区间合并. 对于a[j]来说: 刚開始的时候,转移方程为dp[i][j]=max(dp[i][j-1],dp[i][k-1]+dp[k][j-1]+ ...
随机推荐
- Java简答题附答案
1. Java有没有goto? 有, Goto语句在java中作为保留字, 并没有实现它. 带标号的break, continue局限于循环体中跳转 带标号的goto可以在一个函数(c语言)中任意跳转 ...
- 005 String s = "Hello";s = s + " world!";执行这两行代码执行后,原始的 String 对象中的内容到底变了没有?
原始的String对象中的内容没有改变成“Hello world”. 1.原因 因为在Java中String类被设计成不可改变的类,所以String类的所有对象都是不可变的.第一句代码中,s(存储在栈 ...
- 对Java提供的锁机制的一些思考
Java的数据会在CPU.Register.Cache.Heap和Thread stack之间进行复制操作,而前面四个都是在Java Threads之间共享,因此Java的锁机制主要用于解决Racin ...
- js解析器
1>js的预解析 找var function 参数等 所有的变量,在正式运行代码前,都提前赋了一个值:未定义 所有的函数,在正式运行代码前,都是整个函数块. 遇到重名的:只留一个 如果变量与函数 ...
- laravel中的路由
相信玩过laravel框架的小伙伴们,都知道它路由的强大之处 今天我想给大家分析下这个 首先 要找到配置路由的位置 routes这个目录下,我们找到web.php文件 里面可以看到现成的一个路由 Ro ...
- 【php】 php 的注释和结束符号之间的关系
Closing PHP tags are recognised within single-line comments: <?php // Code will end here ?> ...
- python--第一类对象,函数名,变量名
一 . 第一类对象 函数对象可以像变量一样进行赋值 , 还可以作为列表的元素进行使用 可以作为返回值返回 , 可以作为参数进行传递 def func(): def people(): print('金 ...
- python中实现格式化输出 %用法
当我们在python中需要打印出特定格式的内容时可以用到这个方法,方法介绍如下: 例如我们现在要收集用户的一些个人信息,这时候我们的代码如下: name=input("name: " ...
- LeetCode(109) Convert Sorted List to Binary Search Tree
题目 Given a singly linked list where elements are sorted in ascending order, convert it to a height b ...
- 和为s的两个数字 和为s的连续正数序列
输入一个递增排序的数组和一个数字s,在数组中查找两个数,使得它们的和正好是s,如果有多对数字的和等于s,输出任意一对即可. #include <iostream> using namesp ...