2559. [NOIP2016]组合数问题
【题目描述】
【输入格式】
从文件中读入数据。
第一行有两个整数t, k,其中t代表该测试点总共有多少组测试数据,k的意义见【问题描述】。
接下来t行每行两个整数n, m,其中n, m的意义见【问题描述】。
【输出格式】
输出到文件中。
t行,每行一个整数代表所有的0<=i<=n,0<=j<=min(i,m)中有多少对(i, j)满足C(j,i)是k的倍数。
【样例1输入】
1 2
3 3
【样例1输出】
1
【提示】
在所有可能的情况中,只有C(1,2)是2的倍数。
【样例2输入】
2 5
4 5
6 7
【样例2输出】
0
7
【来源】
NOIP2016 官方数据、
这道题几天之前在我眼里还是懵逼的
不过今天我们学习了一个公式
C下n+1上m=C下n上m-1+C下n上m、
本来只想推推看看,后来一推就是55
然后加了个%k是90
后来实在做不出来了看了看大神的题解原来可以用前缀和
如此看来noip2016的题也不是很难啊,
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=;
int T,k,n,m;
int dp[MAXN][MAXN];
int read(int & n)
{
int flag=,x=;char c='/';
while(c<''||c>''){c=getchar();if(c=='-')flag=;}
while(c>=''&&c<='')x=x*+(c-),c=getchar();
if(flag)n=-x;else n=x;
}
int main()
{
freopen("problem.in","r",stdin);
freopen("problem.out","w",stdout);
read(T);read(k);
for(int i=;i<=;i++)
dp[i][]=,dp[i][i]=;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
if(dp[i+][j]==)
dp[i+][j]=(dp[i][j]+dp[i][j-]); while(T--)
{
read(n);read(m);
int ans=;
for(int i=;i<=n;i++)
for(int j=;j<=min(i,m);j++)
if(dp[i][j]%k==)
ans++;
printf("%d\n",ans);
}
return ;
}
55
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define LL long long
using namespace std;
const int MAXN=;
int T,k,n,m;
LL dp[MAXN][MAXN];
LL sum[MAXN][MAXN];
int read(int & n)
{
int flag=,x=;char c='/';
while(c<''||c>''){c=getchar();if(c=='-')flag=;}
while(c>=''&&c<='')x=x*+(c-),c=getchar();
if(flag)n=-x;else n=x;
}
int main()
{
freopen("problem.in","r",stdin);
freopen("problem.out","w",stdout); read(T);read(k);
for(int i=;i<=;i++)
dp[i][i]=,dp[i][]=i%k;
for(int i=;i<=;i++)
for(int j=;j<i;j++)
dp[i][j]=(dp[i-][j]%k+dp[i-][j-]%k)%k; /*for(int l=0;l<=50;l++)
for(int j=0;j<=l;j++)
cout<<dp[l][j];
cout<<endl;*/
//cout<<dp[1][2]; for(int i=;i<=;i++)
for(int j=;j<=i;j++)
{
if(dp[i][j]==)sum[i][j]=sum[i][j-]+;// 满足条件
else sum[i][j]=sum[i][j-];
} while(T--)
{
read(n);read(m);
LL ans=;
for(int i=;i<=n;i++)
ans+=sum[i][min(i,m)];
cout<<ans<<endl;
//printf("%d\n",sum[n][min(n,m)]);
}
return ;
}
AC
2559. [NOIP2016]组合数问题的更多相关文章
- Noip2016组合数(数论)
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- noip2016组合数问题
题目描述 组合数 Cnm 表示的是从 n 个物品中选出 m 个物品的方案数.举个例子,从 (1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3) 这三种选择方法.根据组合数的 ...
- NOIP2016 组合数问题
https://www.luogu.org/problem/show?pid=2822 题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以 ...
- [Noip2016]组合数(数论)
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- Luogu 2822[NOIP2016] 组合数问题 - 数论
题解 乱搞就能过了. 首先我们考虑如何快速判断C(i, j ) | k 是否成立. 由于$k$非常小, 所以可以对$k$分解质因数, 接着预处理出前N个数的阶乘的因数中 $p_i$ 的个数, 然后就可 ...
- [noip2016]组合数问题<dp+杨辉三角>
题目链接:https://vijos.org/p/2006 当时在考场上只想到了暴力的做法,现在自己看了以后还是没思路,最后看大佬说的杨辉三角才懂这题... 我自己总结了一下,我不能反应出杨辉三角的递 ...
- NOIP 2016 组合数问题
洛谷 P2822 组合数问题 洛谷传送门 JDOJ 3139: [NOIP2016]组合数问题 D2 T1 JDOJ传送门 Description 组合数Cnm表示的是从n个物品中选出m个物品的方案数 ...
- noip 2016提高组D2T1 problem
我们可以先预处理一下组合数模K的值,然后我们可以发现对于答案ji[n][m],可以发现递推式ji[i][j]=ji[i-1][j]+ji[i][j-1]-ji[i-1][j-1]并对于Cij是否%k等 ...
- OI 刷题记录——每周更新
每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...
随机推荐
- mvnw是什么(Maven Wrapper/Maven保持构建工具版本一直的工具)
背景 Maven是一款非常流行的Java项目构建软件,它集项目的依赖管理.测试用例运行.打包.构件管理于一身,是我们工作的好帮手,maven飞速发展,它的发行版本也越来越多,如果我们的项目是基于Mav ...
- CSS聊天气泡
概述 谷歌效果图如下: ie效果图如下: 完整代码 <!DOCTYPE html> <html> <head> <meta charset="gbk ...
- CentOS firewall添加开放端口
添加 firewall-cmd --zone=public --add-port=80/tcp --permanent (–permanent永久生效,没有此参数重启后失效) 重新载入 firewal ...
- Growth: 一个关于怎样成为优秀Web Developer 的 App
想了想还是决定在今天公布一个预览版.这样才干持续改进.Growth是一个关于怎样成为优秀的Web Developer的APP--结合技能树.成长路线图.进阶书单.Web七日谈以及一些小測验. 它是我对 ...
- HDU 5402 Travelling Salesman Problem (构造)(好题)
大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...
- C++MFC编程笔记day01 MFC介绍、创建MFC程序和重写消息处理
一.MFC概念和作用 1.全称Microsoft Foundation Class Library,我们称为微软基础类库,封闭了绝大部分的win32 Api函数,C++语法中的数据结构,程序的运行流程 ...
- 托管C++线程锁实现 c++11线程池
托管C++线程锁实现 最近由于工作需要,开始写托管C++,由于C++11中的mutex,和future等类,托管C++不让调用(报错),所以自己实现了托管C++的线程锁. 该类可确保当一个线程位于 ...
- TCP从连接到释放过程全解
參考书籍:<计算机网络第5版> TCP是面向连接的协议,採用C/S模型建立连接,由client主动发起连接请求,server端允许请求的模式建立连接,通常称为三次握手建立TCP连接. 准备 ...
- java json字符串转成 Map或List
import java.util.List; import java.util.Map; import java.util.Map.Entry; import net.sf.json.JSONArra ...
- POJ2749 Building road
传送门 这道题真是2-SAT好题啊!!卡了我两个点才做完……垃圾POJ还不告诉我哪错了…… 首先我们先花一段时间把题看懂……(其实是翻译一下),之后我们发现因为每个谷仓只能向一个中转点连边,所以他就是 ...