母函数(Generating function)详解

在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。使用母函数解决问题的方法称为母函数方法

母函数可分为很多种,包括普通母函数、指数母函数L级数贝尔级数狄利克雷级数。对每个序列都可以写出以上每个类型的一个母函数。构造母函数的目的一般是为了解决某个特定的问题,因此选用何种母函数视乎序列本身的特性和问题的类型。

这里先给出两句话,不懂的可以等看完这篇文章再回过头来看:

1.“把组合问题的加法法则和幂级数的乘幂对应起来”

2.“母函数的思想很简单 — 就是把离散数列和幂级数一 一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造. “

我们首先来看下这个多项式乘法:

母函数图(1)

由此可以看出:

1.x的系数是a1,a2,…an 的单个组合的全体。

2. x^2的系数是a1,a2,…a2的两个组合的全体。

………

n. x^n的系数是a1,a2,….an的n个组合的全体(只有1个)。

进一步得到:

母函数图(2)

母函数的定义

对于序列a0,a1,a2,…构造一函数:

母函数图(3)

称函数G(x)是序列a0,a1,a2,…的母函数。

这里先给出2个例子,等会再结合题目分析:

第一种:

有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案?

考虑用母函数来解决这个问题:

我们假设x表示砝码,x的指数表示砝码的重量,这样:

1个1克的砝码可以用函数1+1*x^1表示,

1个2克的砝码可以用函数1+1*x^2表示,

1个3克的砝码可以用函数1+1*x^3表示,

1个4克的砝码可以用函数1+1*x^4表示,

上面这四个式子懂吗?

我们拿1+x^2来说,前面已经说过,x表示砝码,x的指数表示砝码的重量!初始状态时,这里就是一个质量为2的砝码。

那么前面的1表示什么?按照上面的理解,1其实应该写为:1*x^0,即1代表重量为2的砝码数量为0个。

所以这里1+1*x^2 = 1*x^0 + 1*x^2,即表示2克的砝码有两种状态,不取或取,不取则为1*x^0,取则为1*x^2

不知道大家理解没,我们这里结合前面那句话:

把组合问题的加法法则和幂级数的乘幂对应起来

接着讨论上面的1+x^2,这里x前面的系数有什么意义?

这里的系数表示状态数(方案数)

1+x^2,也就是1*x^0 + 1*x^2,也就是上面说的不取2克砝码,此时有1种状态;或者取2克砝码,此时也有1种状态。(分析!)

所以,前面说的那句话的意义大家可以理解了吧?

几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:

(1+x)(1+x^2)(1+x^3)(1+x^4)

=(1+x+x^2+x^4)(1+x^3+^4+x^7)

=1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + x^9 + x^10

从上面的函数知道:可称出从1克到10克,系数便是方案数。(!!!经典!!!)

例如右端有2^x^5 项,即称出5克的方案有2种:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。

故称出6克的方案数有2种,称出10克的方案数有1种 。


接着上面,接下来是第二种情况:

第二种:

求用1分、2分、3分的邮票贴出不同数值的方案数:

大家把这种情况和第一种比较有何区别?第一种每种是一个,而这里每种是无限的。

母函数图(4)

以展开后的x^4为例,其系数为4,即4拆分成1、2、3之和的拆分方案数为4;

即 :4=1+1+1+1=1+1+2=1+3=2+2

这里再引出两个概念"整数拆分"和"拆分数":

所谓整数拆分即把整数分解成若干整数的和(相当于把n个无区别的球放到n个无标志的盒子,盒子允许空,也允许放多于一个球)。

整数拆分成若干整数的和,办法不一,不同拆分法的总数叫做拆分数

整数划分:http://acm.nyist.net/JudgeOnline/problem.php?pid=90

代码如下:

 #include <stdio.h>
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,i,j,k;
int c1[],c2[];
scanf("%d",&n);
for(i=;i<=n;i++)
{
c1[i]=;
c2[i]=;
}
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
for(k=;k+j<=n;k+=i)
{
c2[k+j]+=c1[j];
}
for(j=;j<=n;j++)
{
c1[j]=c2[j];
c2[j]=;
}
}
printf("%d\n",c1[n]);
}
return ;
}

现在以上面的第二种情况每种种类个数无限为例,给出模板

 #include <iostream>
using namespace std;
const int _max = ;
// c1是保存各项质量砝码可以组合的数目
// c2是中间量,保存没一次的情况
int c1[_max], c2[_max];
int main()
{ //int n,i,j,k;
int nNum; //
int i, j, k; while(cin >> nNum)
{
for(i=; i<=nNum; ++i) // ---- ①
{
c1[i] = ;
c2[i] = ;
}
for(i=; i<=nNum; ++i) // ----- ②
{ for(j=; j<=nNum; ++j) // ----- ③
for(k=; k+j<=nNum; k+=i) // ---- ④
{
c2[j+k] += c1[j];
}
for(j=; j<=nNum; ++j) // ---- ⑤
{
c1[j] = c2[j];
c2[j] = ;
}
}
cout << c1[nNum] << endl;
}
return ;
}

我们来解释下上面标志的各个地方:(***********!!!重点!!!***********)

①  、首先对c1初始化,由第一个表达式(1+x+x^2+..x^n)初始化,把质量从0到n的所有砝码都初始化为1.

②  、 i从2到n遍历,这里i就是指第i个表达式,上面给出的第二种母函数关系式里,每一个括号括起来的就是一个表达式。

③、j 从0到n遍历,这里j就是(前面i個表达式累乘的表达式)里第j个变量,(这里感谢一下seagg朋友给我指出的错误,大家可以看下留言处的讨论)。如(1+x)(1+x^2)(1+x^3),j先指示的是1和x的系数,i=2执行完之后变为

(1+x+x^2+x^3)(1+x^3),这时候j应该指示的是合并后的第一个括号的四个变量的系数。

④ 、 k表示的是第j个指数,所以k每次增i(因为第i个表达式的增量是i)。

⑤  、把c2的值赋给c1,而把c2初始化为0,因为c2每次是从一个表达式中开始的。


咱们赶快趁热打铁,来几道题目:

(相应题目解析均在相应的代码里分析)

1.  题目:http://acm.hdu.edu.cn/showproblem.php?pid=1028

代码:http://www.cnblogs.com/xl1027515989/p/3691069.html

这题大家看看简单不?把上面的模板理解了,这题就是小Case!

看看这题:

2.  题目:http://acm.hdu.edu.cn/showproblem.php?pid=1398

代码:http://www.cnblogs.com/xl1027515989/p/3691058.html

要说和前一题的区别,就只需要改2个地方。 在i遍历表达式时(可以参考我的资料—《母函数详解》),把i<=nNum改成了i*i<=nNum,其次在k遍历指数时把k+=i变成了k+=i*i; Ok,说来说去还是套模板~~~

3.  题目:http://acm.hdu.edu.cn/showproblem.php?pid=1085

代码:http://www.cnblogs.com/xl1027515989/p/3691055.html

这题终于变化了一点,但是万变不离其中。

大家好好分析下,结合代码就会懂了。

4.  题目:http://acm.hdu.edu.cn/showproblem.php?pid=1171

代码:http://www.wutianqi.com/?p=594

还有一些题目,大家有时间自己做做:

HDOJ:1709,1028、1709、1085、1171、1398、2069、2152

(原创文章,欢迎各位转载,但是请不要任意删除文章中链接,请自觉尊重文章版权,违法必究,谢谢合作。Tanky Woo原创, www.WuTianQi.com)

附:

1.在维基百科里讲到了普通母函數、指數母函數、L級數、貝爾級數和狄利克雷級數:

http://zh.wikipedia.org/zh-tw/%E6%AF%8D%E5%87%BD%E6%95%B0

2.Matrix67大牛那有篇文章:什么是生成函数:

http://www.matrix67.com/blog/archives/120

3.大家可以看看杭电的ACM课件的母函数那篇,我这里的图片以及一些内容都引至那。

转载出处:http://www.wutianqi.com/?p=596

母函数(Generating function)详解的更多相关文章

  1. Function 详解(一)

    一直想写一系列关于javascript的东西,可惜从申请博客以来就一直抽不出时间来好好写上一番,今天终于熬到周末,是该好好整理一下,那么先从声明函数开始吧; 总所周知,在javascript中有匿名函 ...

  2. Flink DataStream API 中的多面手——Process Function详解

    之前熟悉的流处理API中的转换算子是无法访问事件的时间戳信息和水位线信息的.例如:MapFunction 这样的map转换算子就无法访问时间戳或者当前事件的时间. 然而,在一些场景下,又需要访问这些信 ...

  3. 2.Python函数/方法(method/function)详解

    1.什么是函数 它是一段功能代码,理解为一种功能行为,在内存中有空间区域,函数需要被调用才能执行(通过函数名来调用): 好处: 1).提高代码的复用性 2).提升代码的阅读性 3).增加代码的扩展性 ...

  4. 【转】母函数(Generating function)详解 — TankyWoo(红色字体为批注)

    母函数(Generating function)详解 - Tanky Woo 在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供 ...

  5. js Function 加不加new 详解

    以下来自:https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new The new operato ...

  6. 百度地图API详解之事件机制,function“闭包”解决for循环和监听器冲突的问题:

    原文:百度地图API详解之事件机制,function"闭包"解决for循环和监听器冲突的问题: 百度地图API详解之事件机制 2011年07月26日 星期二 下午 04:06 和D ...

  7. Java8 (Function,Consumer,Predicate,Supplier)详解

    1. https://blog.csdn.net/lzm18064126848/article/details/70199769 1.1 https://blog.csdn.net/turbo_zon ...

  8. JS函数动作分层结构详解及Document.getElementById 释义 js及cs数据类型区别 事件 函数 变量 script标签 var function

    html +css 静态页面 js     动态 交互   原理: js就是修改样式, 比如弹出一个对话框. 弹出的过程就是这个框由disable 变成display:enable. 又或者当鼠标指向 ...

  9. 详解jquery插件中(function ( $, window, document, undefined )的作用。

    1.(function(window,undefined){})(window); Q:(function(window,undefined){})(window);中为什么要将window和unde ...

随机推荐

  1. 网络连接详细信息出现两个自动配置ipv4地址的解决办法

    问题描述:网络连接详细信息出现两个自动配置ipv4地址,一个是有效地址,一个是无效地址. 解决办法: 先将本地连接ip设置成自动获取 点击开始——>运行——>输入cmd,回车,进入命令行界 ...

  2. nat模式下更改网络环境, 虚拟机中Linux无法上网的问题

    出现的问题: 1.ifconfig -a 命令下会出现eth0信息中无ip地址等等信息: 2.无法ping通baidu,也就是无法上网: 3.ping 8.8.8.8 提示 connect:netwo ...

  3. Linux之线程相关命令及常用命令

    查进程 top命令:查看系统的资源状况.#top top -d 10     //指定系统更新进程的时间为10秒 ps:查看当前用户的活动进程.#ps -A ps命令查找与进程相关的PID号: ps ...

  4. redis存储对象(转)

    原文地址:http://www.cnblogs.com/JKayFeng/p/5911544.html 为什么要实现序列化接口 当一个类实现了Serializable接口(该接口仅为标记接口,不包含任 ...

  5. Androidstudio的安装与使用调试

    1安装与基本使用 1.1androidstudio的安装 1.到android-studio\bin文件夹里面,根据自己的电脑配置,打开studio.exe或者studio64.exe 2.按照向导默 ...

  6. BFS(两点搜索) FZOJ 2150 Fire Game

    题目传送门 题意:'#'表示草地,两个人在草地上点火,相邻的草地会烧起来,每烧一格等1秒,问最少要等几秒草地才烧完 分析:这题和UVA 11624 Fire!有点像,那题给定了两个点,这题两点不确定, ...

  7. tablespace monitor shell for windows

    1. #! /bin/ksh #set -x SID=$1 ORACLE_SID=stat10gORACLE_HOME=/oracle10g/product/10.2PATH=$PATH:/usr/b ...

  8. 239 Sliding Window Maximum 滑动窗口最大值

    给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口 k 内的数字.滑动窗口每次只向右移动一位.例如,给定 nums = [1,3,-1,-3, ...

  9. 专题十二:实现一个简单的FTP服务器

    引言: 在本专题中将和大家分享如何自己实现一个简单的FTP服务器.在我们平时的上网过程中,一般都是使用FTP的客户端来对商家提供的服务器进行访问(上传.下载文件),例如我们经常用到微软的SkyDriv ...

  10. 使用纯css鼠标移入效果,炫酷的旋转正方体

    首先我们需要创建几个盒子 </div> <div class="wrap"> <div class="cube"> < ...