[模板] Miller-Rabin 素数测试
细节挺多的。。
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<ctime> using namespace std; typedef long long ll; ll mul(ll a,ll b,ll mod) {
ll ret = 0ll;
a %= mod;
while( b ) {
if ( b & 1ll ) ret = ( ret + a ) % mod, b--;
b >>= 1ll;
a = ( a + a ) % mod;
}
return ret;
} ll qpow(ll a,ll b,ll mod) {
ll ret = 1ll;
a %= mod;
while( b ) {
if ( b & 1ll ) ret = mul(ret,a,mod),b--;
b >>= 1ll;
a = mul(a,a,mod);
}
return ret;
} ll ter[]= {,,,,,,,,,,};
const int TOP=;
bool Miller_Rabin(ll n) {
if ( n==2ll||n==3ll ) return true;
if ( !( n & 1ll ) ) return false;
ll d = n - 1ll;
int s = ;
while( !( d & 1ll ) ) ++s, d>>=1ll;
for(int i=; i<=TOP; i++) {
ll a = ter[i];
if(a>=n) return true;
ll x = qpow(a,d,n);
ll y = 0ll;
for(int j=; j<s; j++) {
y = mul(x,x,n);
if ( 1ll == y && 1ll != x && n-1ll != x ) return false;
x = y;
}
if ( 1ll != y ) return false;
}
return true;
} int main() {
ll x;
while(cin>>x) {
Miller_Rabin(x)?cout<<"YES\n":cout<<"NO\n";
}
return ;
}
[模板] Miller-Rabin 素数测试的更多相关文章
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
- POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- Miller Rabin素数检测
#include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...
- Miller Rabbin素数测试
步骤 ①先写快速幂取模函数 ②MR算法开始 (1)传入两个参数一个是底数一个是n也就是幂数,如果n是一个合数那么可以判定,这个数一定不是素数 (2)然后开始寻找一个奇数的n去计算,如果最后满足a^d% ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
- 【数论基础】素数判定和Miller Rabin算法
判断正整数p是否是素数 方法一 朴素的判定
随机推荐
- android的logcat的message有字符长度的限制,超过将直接截断
http://blog.csdn.net/qidizi/article/details/47291803 今天想在logcat中输出足够多的调试信息时,发现从logcat中返回的信息中明显少了后面一节 ...
- spoj SUBLEX - Lexicographical Substring Search【SAM】
先求出SAM,然后考虑定义,点u是一个right集合,代表了长为dis[son]+1~dis[u]的串,然后根据有向边转移是添加一个字符,所以可以根据这个预处理出si[u],表示串u后加字符能有几个本 ...
- 洛谷P2515 [HAOI2010]软件安装(tarjan缩点+树形dp)
传送门 我们可以把每一个$d$看做它的父亲,这样这个东西就构成了一个树形结构 问题是他有可能形成环,所以我们还需要一遍tarjan缩点 缩完点后从0向所有入度为零的点连边 然后再跑一下树形dp就行了 ...
- Codeforces Round #544 (Div. 3) B.Preparation for International Women's Day
链接:https://codeforces.com/contest/1133/problem/B 题意: 给n个数,和一个k,在n个数中选几对数,保证没对数相加可以整除k. 求最大能选几个数. 思路: ...
- 洛谷 P3768 简单的数学题
https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...
- 解题报告:poj 3259 Wormholes(入门spfa判断负环)
Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...
- 修改dns访问android.com
1.几个常用dns服务器 8.8.8.8 美国 加利福尼亚州圣克拉拉县山景市谷歌公司DNS服务器 8.8.4.4 美国 加利福尼亚州圣克拉拉县山景市谷歌公司DNS服务器 8.8.4.3 美国 加利福尼 ...
- Suricata里的规则与Snort区别之处
不多说,直接上干货! 见官网 https://suricata.readthedocs.io/en/latest/rules/differences-from-snort.html
- CentOS Linux下MySQL 5.1.x的安装、优化和安全配置
下载页面:http://dev.mysql.com/downloads/mysql/5.1.html#downloads 到页面底部,找到Source downloads,这个是源码版本,下载第1个T ...
- c#自定义鼠标形状
更改鼠标指针,需要使用到 Windows API: 1. 添加命名空间的引用: using System.Runtime.InteropServices; using System.Reflectio ...