FWT板子
板子:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = ;
const int MOD = ;
template<typename T>
inline void read(T&x)
{
T f = ,c = ;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){c=c*+ch-'';ch=getchar();}
x = f*c;
}
int n;
ll inv_2=(MOD+)/;
ll a[(<<N)+],b[(<<N)+],c[(<<N)+];
void Mod(ll&x){if(x>=MOD)x-=MOD;}
void fwt_or(ll *a,int len,int k)
{
for(int i=;i<len;i<<=)
for(int j=;j<len;j+=(i<<))
for(int o=;o<i;o++)
{
if(k==)Mod(a[j+o+i]+=a[j+o]);
else Mod(a[j+o+i]+=-a[j+o]+MOD);
}
}
void fwt_and(ll *a,int len,int k)
{
for(int i=;i<len;i<<=)
for(int j=;j<len;j+=(i<<))
for(int o=;o<i;o++)
{
if(k==)Mod(a[j+o]+=a[j+o+i]);
else Mod(a[j+o]+=-a[j+o+i]+MOD);
}
}
void fwt_xor(ll *a,int len,int k)
{
for(int i=;i<len;i<<=)
for(int j=;j<len;j+=(i<<))
for(int o=;o<i;o++)
{
int w1 = a[j+o],w2 = a[j+o+i];
a[j+o] = (w1+w2)%MOD;
a[j+o+i] = (w1-w2+MOD)%MOD;
if(k==-)a[j+o]=a[j+o]*inv_2%MOD,a[j+o+i]=a[j+o+i]*inv_2%MOD;
}
}
void mul()
{
for(int i=;i<(<<n);i++)
c[i] = a[i]*b[i]%MOD;
}
void print()
{
for(int i=;i<(<<n);i++)
printf("%lld ",c[i]);
puts("");
}
int main()
{
read(n);int len = (<<n);
for(int i=;i<len;i++)
read(a[i]);
for(int i=;i<len;i++)
read(b[i]);
fwt_or(a,len,),fwt_or(b,len,);
mul();
fwt_or(c,len,-);
print();
fwt_or(a,len,-),fwt_or(b,len,-);
fwt_and(a,len,),fwt_and(b,len,);
mul();
fwt_and(c,len,-);
print();
fwt_and(a,len,-),fwt_and(b,len,-);
fwt_xor(a,len,),fwt_xor(b,len,);
mul();
fwt_xor(c,len,-);
print();
fwt_xor(a,len,-),fwt_xor(b,len,-);
return ;
}
FWT板子的更多相关文章
- 能轻松背板子的FWT(快速沃尔什变换)
FWT应用 我不知道\(FWT\)的严格定义 百度百科和维基都不知道给一坨什么****东西** FWT(Fast Walsh Fransform),中文名快速沃尔什变换 然后我也不知道\(FWT\)到 ...
- bzoj4589: Hard Nim fwt
题意:求n个m以内的素数亦或起来为0的方案数 题解:fwt板子题,先预处理素数,把m以内素数加一遍(下标),然后fwt之后快速幂即可,在ifwt之后a[0]就是答案了 /*************** ...
- Noip前的大抱佛脚----数论
目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...
- 【51nod】1773 A国的贸易
题解 FWT板子题 可以发现 \(dp[i][u] = \sum_{i = 0}^{N - 1} dp[i - 1][u xor (2^i)] + dp[i - 1][u]\) 然后如果把异或提出来可 ...
- 卷积FFT、NTT、FWT
先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. ...
- CF914G Sum the Fibonacci FWT、子集卷积
传送门 一道良心的练习FWT和子集卷积的板子-- 具体来说就是先把所有满足\(s_a \& s_b = 0\)的\(s_a \mid s_b\)的值用子集卷积算出来,将所有\(s_a \opl ...
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
- [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)
目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...
随机推荐
- 开挂的map
转自:http://blog.csdn.net/sunshinewave/article/details/8067862 #include<iostream> #include<ma ...
- elasticsearch 查询 query
对于 类型是 text的字段,并且分析器指明是ik_max_word的会建立倒排索引 查询的分类: match查询: 会自动转换大小写,会分词, term查询: 不会转换和分词,只能值匹配 term ...
- asp,php,jsp 不缓存网页的办法
ASP实例源码浏览次数:4 一般地,我们要查看Internet 网上的一个网页,那么 当您第一次访问这个网页的时候, 系统首先要将这个网页下载到您的本地计算机 的一个临时文件夹中进行缓存, 当在一定的 ...
- A Dangerous Maze LightOJ - 1027
这题意真是... 题意:你在一个迷宫里,有一些门,每个门有一个参数x,如果为正表明你进入门后可以花x的时间出去,如果为负表明你进入门后可以花-x的时间回到出发的地方.每次回到出发的地方之后,不能记得之 ...
- Eclipse 运行内存不足情况
在debug或者run 时 在VM arguments 处添加 -Xms512m -Xmx512m
- 万能makefile模板
这里一份万能makefile模板,写opencv项目时候使用的. 前提是提前配置好 包管理工具 pkg 然后就不用每次都去 -lopencv_xxx了. ####################### ...
- [在读]Nodejs实战
书到手的时候其实就已经过时,Express更新太快,因而书中的例子实践起来会有很多阻碍. 目前搁置状态.
- android AutoCompleteTextView 实现手机号格式化,附带清空历史的操作
有个小伙伴遇到了这样一个问题,就是AutoCompleteTextView实现自动填充的功能.同时要具备手机格式化的功能.下拉列表最后一行是有个清除历史的功能.可是点击“清除历史”却把文字要设置进去A ...
- Android学习笔记--Intent
Intent是android四大组件之间交互的一种重要方式.Intent可以指明当前要执行的动作,也可以指明要传递的数据.Intent可以用来启动活动,启动服务,发送广播. Intent分为两种:1. ...
- 8 Explicit Animations 指明的动画 笔记
8 Explicit Animations 指明的动画 笔记 If you want something done right, do it yourself. 如果你想让事情做好,那就自动来 ...