[NOIP2002] 提高组 洛谷P1033 自由落体
题目描述
在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1。在地面上有一个小车(长为 L,高为 K,距原点距离为 S1)。已知小球下落距离计算公式为 d=1/2*g*(t^2),其中 g=10,t 为下落时间。地面上的小车以速度 V 前进。
如下图:
小车与所有小球同时开始运动,当小球距小车的距离 <= 0.0001(感谢Silver_N修正) 时,即认为小球被小车接受(小球落到地面后不能被接受)。
请你计算出小车能接受到多少个小球。
输入输出格式
输入格式:
键盘输人:
H,S1,V,L,K,n (l<=H,S1,V,L,K,n <=100000)
输出格式:
屏幕输出:
小车能接受到的小球个数。
输入输出样例
5.0 9.0 5.0 2.5 1.8 5
1
物理问题2333
计算小车到达一个位置的时间,和该时间内小球运动的距离,判断能不能接到就行。注意精度误差。
/*By SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const double eps=0.0001;
double H,s1,n,L,K,V;
int main(){
cin>>H>>s1>>V>>L>>K>>n;
int cnt=;
for(int i=;i<n;i++){
double t=(s1-i)/V;
double h=*t*t;
if(H-h<-eps)continue;
t=(s1+L-i+eps)/V;
if(H-t*t*-K<=eps)cnt++;
}
cout<<cnt<<endl;
return ;
}
[NOIP2002] 提高组 洛谷P1033 自由落体的更多相关文章
- 洛谷——P1033 自由落体
P1033 自由落体 题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公 ...
- 洛谷P1033 自由落体
P1033 自由落体 题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公 ...
- 洛谷 P1033 自由落体
P1033 自由落体 题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公 ...
- 洛谷P1033 自由落体 题解
题目链接:https://www.luogu.org/problemnew/show/P1033 呵呵,真的学好物理比较重要,前些年卡在这题上的我今天终于会做了,可恶的自由落体(也许是我太弱了吧 ) ...
- 洛谷 P1033 自由落体 Label:模拟&&非学习区警告
题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g* ...
- [NOIP2002] 提高组 洛谷P1034 矩形覆盖
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- [NOIP2002] 提高组 洛谷P1031 均分纸牌
题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...
- [NOIP2015] 提高组 洛谷P2615 神奇的幻方
题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...
- [NOIP2014] 提高组 洛谷P2038 无线网络发射器选址
题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻 ...
随机推荐
- Bundle的用法
一.API文档说明 1.介绍 用于不同Activity之间的数据传递 1.重要方法 clear():清除此Bundle映射中的所有保存的数据. clone():克隆当前Bundle containsK ...
- Linux 从源码编译安装 Nginx
Nginx 是一个高性能的 HTTP 和 反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器.Nginx 编译安装比较简单,难点在于配置.下面是 Nignx 0.8.54 编译安装和简 ...
- sql查询作业执行时间
SELECT j.name AS Job_Name , h.step_id AS S ...
- JS正则匹配待重命名文件名
<script>var str = "123 - Copy(2).csv";var regExp = /^123( - Copy(\(\d+\))?)?.csv$/;d ...
- 洛谷 P1351 联合权值
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- SQLite – HAVING 子句
SQLite – HAVING子句 HAVING使您能够指定过滤条件哪一组结果出现在最终的结果. WHERE子句的地方条件选定的列, 在有HAVING 子句的地方 就有GROUP BY子句包含的条件组 ...
- 跑RFCN
按照这个来http://blog.csdn.net/sinat_30071459/article/details/53202977
- C++虚析构函数的使用
如果,你设计的程序里,释放对象实例的时候,有“使用某个基类的指针,来释放它指向的派生类的实例”这种用法出现的话,那么,这个基类的destructor就应该设计成virtual的. 如果,基类不是vir ...
- QT+ 状态栏+核心控件+浮动窗口
#include "mainwindow.h" #include <QStatusBar> #include <QLabel> #include<QT ...
- java+selenium+maven+IntelliJ IDEA 搭建简单的UI自动化测试环境
1. 用IntelliJ IDEA新建一个maven工程 2. 在pom.xml中添加依赖: <dependency> <groupId>org.seleniumhq.sele ...