无向图生成树计数 基尔霍夫矩阵 SPOJ Highways
基尔霍夫矩阵
https://blog.csdn.net/w4149/article/details/77387045
https://blog.csdn.net/qq_29963431/article/details/51236064
题目链接 https://vjudge.net/problem/SPOJ-HIGH
AC代码
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
using namespace std;
typedef long long ll;
const int maxn=1e3+,maxm=,inf=0x3f3f3f3f;
const ll mod=;
ll a[maxn][maxn],du[maxn];
ll det(int n)
{
ll ans = ;
for (int i = ; i <= n; i++)
{
for (int j = i + ; j <= n; j++)
{
while (a[j][i] != )
{
ll u = a[i][i] / a[j][i];
for (int k = i; k <= n; k++)
{
ll t = (a[i][k] - (ll)a[j][k] * u);// % mod + mod) % mod;
a[i][k] = a[j][k];
a[j][k] = t;
}
ans = -ans;
}
}
ans = ans * a[i][i] ;//% mod;
}
if (ans < )
{
ans=-ans;
//ans += mod;
}
return ans;
}
int main()
{
int t,n,m;
scanf("%d",&t);
while(t--)
{
fillchar(a,);
fillchar(du,);
scanf("%d%d",&n,&m);
for(int i=;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
du[u]++,du[v]++;
a[v][u]=-,a[u][v]=-;
}
for(int i=;i<=n;i++)
a[i][i]=du[i];
printf("%lld\n",det(n));
}
}
行列式求值模板
int a[maxn][maxn];
ll det(int n)
{
ll ans = ;
for (int i = ; i <= n; i++)
{
for (int j = i + ; j <= n; j++)
{
while (a[j][i] != )
{
ll u = a[i][i] / a[j][i];
for (int k = i; k <= n; k++)
{
int t = (a[i][k] - (ll)a[j][k] * u % mod + mod) % mod;
a[i][k] = a[j][k];
a[j][k] = t;
}
ans = -ans;
}
}
ans = ans * a[i][i] % mod;
}
if (ans < )
{
ans += mod;
}
return ans;
}
无向图生成树计数 基尔霍夫矩阵 SPOJ Highways的更多相关文章
- 生成树的计数(基尔霍夫矩阵):UVAoj 10766 Organising the Organisation SPOJ HIGH - Highways
HIGH - Highways In some countries building highways takes a lot of time... Maybe that's because th ...
- 生成树的计数(基尔霍夫矩阵):BZOJ 1002 [FJOI2007]轮状病毒
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3928 Solved: 2154[Submit][Statu ...
- BZOJ 1002: [FJOI2007]轮状病毒【生成树的计数与基尔霍夫矩阵简单讲解+高精度】
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5577 Solved: 3031[Submit][Statu ...
- 疯子的算法总结(九) 图论中的矩阵应用 Part 2 矩阵树 基尔霍夫矩阵定理 生成树计数 Matrix-Tree
定理: 1.设G为无向图,设矩阵D为图G的度矩阵,设C为图G的邻接矩阵. 2.对于矩阵D,D[i][j]当 i!=j 时,是一条边,对于一条边而言无度可言为0,当i==j时表示一点,代表点i的度. 即 ...
- 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- bzoj1002 轮状病毒 暴力打标找规律/基尔霍夫矩阵+高斯消元
基本思路: 1.先观察规律,写写画画未果 2.写程序暴力打表找规律,找出规律 1-15的答案:1 5 16 45 121 320 841 2205 5776 151 ...
- BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...
- bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2234 Solved: 1227[Submit][Statu ...
- BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】
BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...
随机推荐
- RxJava尝试取代Handler初探
在之前的一篇文章中,我们探究了RxJava的使用方法,详细请看https://www.cnblogs.com/yanyojun/p/9745675.html 根据扔物线大神的描述,如果用一个词来概括R ...
- Linux系统使用iftop查看带宽占用情况
Linux系统下如果服务器带宽跑满了,查看跟哪个ip通信占用带宽比较多,可以通过iftop命令进行查询,使用方法如下: 1 安装方法[软件官网地址:http://www.ex-parrot.com/~ ...
- HTML5应用 + Cordova = 平台相关的混合应用
Jerry之前的一篇文章 SAP Fiori应用的三种部署方式 曾经提到SAP Fiori应用的三种部署方式: On Premise环境下以ABAP BSP应用作为Fiori应用部署和运行的载体 部署 ...
- Android(java)学习笔记183:多媒体之图形颜色的变化
1.相信大家都用过美图秀秀中如下的功能,调整颜色: 2. 下面通过案例说明Android中如何调色: 颜色矩阵 ColorMatrix cm = new ColorMatrix(); paint.se ...
- nginx的编译安装
下载源码 wget http://nginx.org/download/nginx-1.15.9.tar.gz 安装开发包组 yum groupinstall "Development To ...
- 1、C编程预备计算机知识
一.数据类型 基本数据类型 1.整数 整形 -- int -- 4 短整型 -- short int -- 2 长整型 -- long int --8 2.浮点数(实数) 单精度浮点数 -- floa ...
- ionic小白的学习路之目录结构分析、创建组件、创建页面、页面跳转
一. 目录结构分析 hooks:编译cordova 时自定义的脚本命令,方便整合到我们的编译系统和版本控制系统中. node_modules :node 各类依赖包. resources :andro ...
- IIS实现HTTPS的主机名绑定
默认情况下,IIS中HTTPS 绑定是无法指定主机名的解决办法:通过手工修改 IIS 配置来实现主机头绑定.打开如下位置的文件. C:\Windows\system32\inetsrv\config\ ...
- java中HashMap,LinkedHashMap,TreeMap,HashTable的区别
java为数据结构中的映射定义了一个接口java.util.Map;它有四个实现类,分别是HashMap Hashtable LinkedHashMap 和TreeMap Map主要用于存储健值对,根 ...
- hdu3404 Switch lights
题目描述 题解: 首先,由$SG$定理得SG(x,y)=mex(SG(x',y)^SG(x,y')^SG(x',y'))(x'<x,y'<y) 这里的$SG(x,y)$叫$Nim$积. $ ...