51nod1040 最大公约数之和
求$\sum_{i=1}^{n}(i,n)$。n<=1e9。
$\sum_{i=1}^{n}(i,n)=\sum_{d|n}d\sum_{i=1}^{n}[(i,n)=d]=\sum_{d|n}d\sum_{k=1}^{\frac{n}{d}}[(k,\frac{n}{d})=1]=\sum_{d|n}d\varphi(\frac{n}{d})=\sum_{d|n}\frac{n\varphi(d)}{d}$
枚举因子。搞定。
//#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
//#include<map>
#include<math.h>
//#include<time.h>
//#include<complex>
#include<algorithm>
using namespace std; int n;
int list[],num[],len=; #define LL long long
LL ans;
void dfs(int cur,int now,int s)
{
if (cur>len)
{
int p=now;
for (int i=;i<=len;i++) if ((s>>(i-))&) p=p/list[i]*(list[i]-);
ans+=n/now*p; return;
}
dfs(cur+,now,s);
for (int i=,tmp=list[cur];i<=num[cur];i++,tmp*=list[cur]) dfs(cur+,now*tmp,s|(<<(cur-)));
} int main()
{
scanf("%d",&n);
int tnt=n;
for (int i=;1ll*i*i<=tnt;i++) if (tnt%i==)
{
list[++len]=i;
while (tnt%i==) tnt/=i,num[len]++;
}
if (tnt) {list[++len]=tnt; num[len]=;}
ans=; dfs(,,); printf("%lld\n",ans);
return ;
}
51nod1040 最大公约数之和的更多相关文章
- 51nod1040 最大公约数之和,欧拉函数或积性函数
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...
- 51nod1040最大公约数之和(欧拉函数)
题面 传送门 题解 这种题目就是推倒推倒 \[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\sum_{j=1}^n[\gcd(j,n)=i]\] \[\sum_{i=1}^n ...
- 51nod1188 最大公约数之和 V2
考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi( ...
- 51nod 1237 最大公约数之和 V3(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51 nod 1188 最大公约数之和 V2
1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...
- 51nod 1040 最大公约数之和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...
- 51nod 1040 最大公约数之和 欧拉函数
1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...
- 51nod 1040 最大公约数之和
给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 Input 1个数N(N <= ...
随机推荐
- List的深度copy和浅度拷贝
List<Student> list= Arrays.asList( new Student("Fndroid", 22, Student.Sax.MALE, 180) ...
- CSS进阶:提高你前端水平的 4 个技巧
译者注:随着 Node.js .react-native 等技术的不断出现,和互联网行业的创业的层出不穷,了解些前端知识,成为全栈攻城师,快速的产出原型,展示你的创意,对程序员,尤其是在创业的程序员来 ...
- Android Learning Note -- AsyncTask浅尝
AsyncTask 实现原理 AsyncTask是Android提供的轻量级异步类,可以直接继承AsyncTask在类中实现异步操作,并提供接口反馈当前的异步执行程度(通过接口实现UI进度更新),最后 ...
- Junit测试集锦
Junit测试集锦 前言: 一个程序从设计很好的状态开始,随着新的功能不断地加入,程序逐渐地失去了原有的结构,最终变成了一团乱麻.所以在开发过程中,对于程序员来说,测试是非常重要的.言归正传,开始Ju ...
- IP地址 子网掩码 默认网关和DNS服务器的关系
在过去,男人是需要能够上房揭瓦的,是要能够修水管的.现在的男人是需要会装系统的,会设置路由器的.世界变化太快! 废话不多说,本文来讨论一下电脑上最为常见的几个网络参数:IP地址.子网掩码.默认网关和D ...
- JDBC性能优化篇
系统性能. 少用Metadata方法 与其它的JDBC方法相比, 由ResultSet对象生成的metadata对象的相对来说是很慢的. 应用程序应该缓存从ResultSet返回的metada ...
- Oracle的Central Inventory和Local inventory详解
很多朋友对Oracle的inventory信息不太了解以至遇到相关的问题不知道如何处理,这篇文章我们将详细讲解Oracle的Central Inventory (oraInventory)和Local ...
- VsCode使用之HTML 中 CSS Class 智能提示
HTML 中 CSS Class 智能提示 安装插件:HTML CSS Support 设置中添加以下代码: "editor.parameterHints": true, &quo ...
- 部署 k8s Cluster(下)【转】
上节我们通过 kubeadm 在 k8s-master 上部署了 Kubernetes,本节安装 Pod 网络并添加 k8s-node1 和 k8s-node2,完成集群部署. 安装 Pod 网络 要 ...
- Spring框架针对dao层的jdbcTemplate操作之jdbc数据库连接原始操作方法 所需安装包下载
crud指数据库或者持久层的基本操作,包括 增加(Create).读取查询(Retrieve 取回).更新(Update)和删除(Delete) Spring不仅对JDBC进行了封装,也对Hibern ...