看了官方题解+q神的讲解才懂。。。

智商问题。。

讲道理。。数学真的比脱单难啊。。。


题目链接:

http://codeforces.com/problemset/problem/660/E

题意:

给定数字范围,问由这些数字组成的长度为n的串的子序列有多少种?

分析:

方法一:

枚举长度k,计算以其为子序列的原串种数。

k=0时,ans=mn

k≥1时,设序列元素为x1,x2,x3...xk,为了避免重复,我们假设当前位置是第一次出现xi,即要求x1之前的元素不会出现x1,x1和x2之间的元素不会出现x2,依次类推,每个间隔中的每个元素都为m−1种。

最后枚举xk结束的位置,即xk后面的元素个数j,这些元素每个有m种可能。由于我们枚举了xk的位置,那么前k−1个元素的位置就有(n−j−1k−1)种。

这样对于每个k,我们可以得到公式:

∑j=0n−kmkmj(m−1)n−j−k(n−j−1k−1)

令s=n−j,则有

∑k=1n∑s=knmkmn−s(m−1)s−k(s−1k−1)
(交换求和)=∑s=1n∑k=1smkmn−s(m−1)s−k(s−1k−1)

后一项求和利用二项式定理进行化简,最终得到

=∑s=1nmn−s+1∗(2m−1)s−1

代码:

#include <iostream>
using namespace std;
const int mod = 1e9 + 7;
int quick_pow(int a, int b)
{
int ans = 1;
for(;b;b >>= 1, a = a * 1ll * a % mod){
if(b & 1) ans = ans * 1ll * a % mod;
}
return ans;
}
int main()
{
int n, m;cin>>n>>m;
int ans = quick_pow(m, n);
for(int s = 1; s <= n; s ++)
ans = (ans + quick_pow(m, n - s+ 1) * 1ll * quick_pow( 2 * m - 1, s - 1)) % mod;
cout<<ans<<endl;
return 0;
}

然后可以发现这个就是个等比数列。

最后不要忘记加上空串的mn。

#include <iostream>
using namespace std;
const int mod = 1e9 + 7;
int quick_pow(int a, int b)
{
int ans = 1;
for(;b;b >>= 1, a = a * 1ll * a % mod){
if(b & 1) ans = ans * 1ll * a % mod;
}
return ans;
}
int main()
{
int n, m;cin>>n>>m;
int ans ;
if(m == 1) ans = n + 1;
else
ans = (quick_pow(m, n) + m * 1ll * (quick_pow(2 * m - 1, n) - quick_pow(m, n)) % mod * quick_pow(m - 1, mod - 2) % mod) % mod;
cout<<ans<<endl;
return 0;
}

方法二:

还有一种卿学姐的dp方法。。

Codeforces 660E Different Subsets For All Tuples【组合数学】的更多相关文章

  1. Educational Codeforces Round 11 E. Different Subsets For All Tuples 动态规划

    E. Different Subsets For All Tuples 题目连接: http://www.codeforces.com/contest/660/problem/E Descriptio ...

  2. 【CF660E】Different Subsets For All Tuples 结论题

    [CF660E]Different Subsets For All Tuples 题意:对于所有长度为n,每个数为1,2...m的序列,求出每个序列的本质不同的子序列的数目之和.(多个原序列可以有相同 ...

  3. Different Subsets For All Tuples CodeForces - 660E (组合计数)

    大意: 定义$f(a)$表示序列$a$本质不同子序列个数. 给定$n,m$, 求所有长$n$元素范围$[1,m]$的序列的$f$值之和. 显然长度相同的子序列贡献是相同的. 不考虑空串, 假设长$x$ ...

  4. 【CF660E】Different Subsets For All Tuples(组合数学)

    点此看题面 大致题意: 有一个长度为\(n\)的数列,每个位置上数字的值在\([1,m]\)范围内,则共有\(m^n\)种可能的数列.分别求出每个数列中本质不同的子序列个数,然后求和. 一些分析 首先 ...

  5. 【组合数学】cf660E. Different Subsets For All Tuples

    比较套路的组合数学题 For a sequence a of n integers between 1 and m, inclusive, denote f(a) as the number of d ...

  6. codeforces 1284C. New Year and Permutation(组合数学)

    链接:https://codeforces.com/problemset/problem/1284/C 题意:定义一个framed segment,在区间[l,r]中,max值-min值 = r - ...

  7. Codeforces 979E Kuro and Topological Parity - 动态规划 - 组合数学

    题目传送门 传送点 题目大意 给定$n$个标号依次为$1, 2, \cdots, n$的点,其中一些点被染成一些颜色,剩下的点没有染色.你需要添加一些有向边并将剩下的点染色,满足有向边从编号小的一端指 ...

  8. Codeforces Round #309 (Div. 1) A(组合数学)

    题目:http://codeforces.com/contest/553/problem/A 题意:给你k个颜色的球,下面k行代表每个颜色的球有多少个,规定第i种颜色的球的最后一个在第i-1种颜色的球 ...

  9. Codeforces 895C - Square Subsets

    895C - Square Subsets 思路:状压dp. 每个数最大到70,1到70有19个质数,给这19个质数标号,与状态中的每一位对应. 状压:一个数含有这个质因子奇数个,那么他状态的这一位是 ...

随机推荐

  1. Summary of 2016 International Trusted Computing and Cloud Security Summit

    1)      Welcome Remarks 2)      The advancement of Cloud Computing and Tursted Computing national st ...

  2. BZOJ 2157: 旅游 (2017.7.21 6:30-2017.7.21 15:38 今日第一题。。)

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1754  Solved: 765 Description Ray 乐忠于旅游,这次他来到了T 城.T ...

  3. swift 泛型的类型约束

    总结: 1.类型约束只能添加到泛型参量上面 2.关联类型是泛型参量: 3.关联类型可以通过 协议.关联类型名称的形式引用: func allItemsMatch<C1: Container, C ...

  4. zabbix利用微信报警

    一.背景介绍 报警的方式有很多种,比如常用的邮件报警,短信,微信等.那这篇文章主要是实现微信报警. 值得注意的是,之前使用微信企业公众号,现在微信企业公众号更新成企业微信了.所以直接注册企业微信,进入 ...

  5. Sql Server 中锁的概念(1)

    Sql Server 中锁的概念   锁的概述 一. 为什么要引入锁 多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 丢失更新A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破 ...

  6. 编码&解码

    编码与解码首先,明确一点,计算机中存储的信息都是二进制的 编码/解码本质上是一种映射(对应关系):比如‘a’用ascii编码则是65,计算机中存储的就是00110101,但是显示的时候不能显示0011 ...

  7. Linux系统中使用lftp命令实现FTP上传下载

    Linux 下常用的操作命令有 ftp. lftp 和 sftp,图形化界面非常好用的有 FileZilla.不过在服务器命令界面中,lftp使用比较方便,功能也比ftp更加强大.lftp的界面很像L ...

  8. phpstorm的全局操作快捷键ctrl+shift+f被搜狗占用处理方法

    1.找到搜狗软件,右键选择属性设置 2.如图选择系统功能快捷键 3.去掉简繁切换快捷方式,确定后即可使用phpstorm的ctrl+shift+f来进行全局查找

  9. pwntools使用简介3

    连接 本地process().远程remote().对于remote函数可以接url并且指定端口. IO模块 下面给出了PwnTools中的主要IO函数.这个比较容易跟zio搞混,记住zio是read ...

  10. LeetCode(34)Search for a Range

    题目 Given a sorted array of integers, find the starting and ending position of a given target value. ...