BZOJ 3277 串 & BZOJ 3473 字符串 (广义后缀自动机、时间复杂度分析、启发式合并、线段树合并、主席树)
标签那么长是因为做法太多了。。。
题目链接: (bzoj 3277) https://www.lydsy.com/JudgeOnline/problem.php?id=3277
(bzoj 3473) https://www.lydsy.com/JudgeOnline/problem.php?id=3473
题解:
先讲三个做法公共部分: 建出广义SAM,然后对于每个点求出它在多少字符串中出现过。
做法一
把每个字符串在广义SAM上暴力跑。每跑到一个点就暴力沿着fail树往上跳,标记跳过的点,直到跳到已标记的点为止(每个串要换用不同的标记)。
时间复杂度\(O(L\sqrt L)\) (\(n\)为串的个数,\(L\)为总长度)
写一下时间复杂度分析: (我自己想的,很有可能是错的,有错恳请大佬指出!!感谢)
假设某个字符串长度为\(x\), 则最坏情况下它一直在往深处走,并且每一步都没有碰到已经跳过的点,这种情况下其走的步数是\(\sum^{x}_{i=1}i=O(x^2)\).
但是它还要受到另一个限制,就是走的步数不超过SAM总大小\(O(L)\). 因此其对时间复杂度贡献为\(O(\min(x^2),L)\).
计算最坏情况下的时间复杂度,也就是已知\(\sum^{m}_{i=1} x_i=L\), 求\(\sum^{m}_{i=1} \min(x_i^2,L)\)的最大值。显然当\(x_i>\sqrt L\)时是没有任何意义的(白白浪费代价,价值不增加),所以就是已知\(\sum^{m}_{i=1} x_i=L\)且对于任意\(i\)有\(i\le \sqrt L\), 求\(\sum^{m}_{i=1} x_i^2\)的最大值。由函数的凹凸性知显然(或者也可以用偏导数解释,如果你愿意的话。。。)所有串长均为\(\sqrt L\)时目标函数最大,为\(O(L\sqrt L)\).
做法二
类似于BZOJ2754/BZOJ2780, 就是个数颜色问题,每个点开个set记录经过这个点的所有串,然后沿着Parent树自下而上启发式合并。时间复杂度\(O(n\log^2n)\).
线段树合并貌似可以做到\(O(n\log n)\)?
做法三
依然是数颜色,可以使用DFS序+主席树等各种神奇做法解决。时间复杂度\(O(n\log^2n)\) (?)
代码
做法一
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<vector>
#define llong long long
using namespace std;
const int N = 4e5;
const int S = 26;
struct SAM
{
int id[N+3];
int fa[N+3];
int son[N+3][S+3];
int len[N+3];
int sz[N+3];
int buc[N+3];
int oid[N+3];
int cnt[N+3];
int cid[N+3];
int mx[N+3];
int siz,rtn,lstpos;
void init() {id[0] = siz = rtn = lstpos = 1;}
int insertstr(char ch)
{
int p = lstpos,np; siz++; np = lstpos = siz; len[np] = len[p]+1; sz[np] = 1;
for(; p && son[p][ch]==0; p=fa[p]) {son[p][ch] = np;}
if(p==0) fa[np] = rtn;
else
{
int q = son[p][ch];
if(len[q]==len[p]+1) {fa[np] = q;}
else
{
siz++; int nq = siz; len[nq] = len[p]+1;
memcpy(son[nq],son[q],sizeof(son[q]));
fa[nq] = fa[q]; fa[np] = fa[q] = nq;
for(; p && son[p][ch]==q; p=fa[p]) {son[p][ch] = nq;}
}
}
return np;
}
void getsort()
{
for(int i=1; i<=siz; i++) buc[len[i]]++;
for(int i=1; i<=siz; i++) buc[i] += buc[i-1];
for(int i=siz; i>=1; i--) oid[buc[len[i]]--] = i;
}
} sam;
vector<char> str[N+3];
char a[N+3];
int n,m;
int main()
{
scanf("%d%d",&n,&m);
sam.init();
for(int i=1; i<=n; i++)
{
scanf("%s",a+1);
sam.lstpos = 1;
int lena = strlen(a+1);
for(int j=1; j<=lena; j++) {sam.insertstr(a[j]-96); str[i].push_back(a[j]);}
}
// for(int i=1; i<=sam.siz; i++) for(int j=1; j<=S; j++) if(sam.son[i][j]) printf("trans%d %d %d\n",i,j,sam.son[i][j]);
// for(int i=1; i<=sam.siz; i++) printf("i%d len%d fa%d\n",i,sam.len[i],sam.fa[i]);
sam.getsort();
for(int i=1; i<=n; i++)
{
int pos = sam.rtn;
for(int j=0; j<str[i].size(); j++)
{
pos = sam.son[pos][str[i][j]-96];
int tmp = pos;
for(; tmp && sam.cid[tmp]!=i; tmp=sam.fa[tmp]) {sam.cnt[tmp]++; sam.cid[tmp] = i;}
}
}
sam.cnt[1] = 0;
for(int i=1; i<=sam.siz; i++)
{
int u = sam.oid[i];
sam.mx[u] = sam.mx[sam.fa[u]]+(sam.cnt[u]>=m ? sam.len[u]-sam.len[sam.fa[u]] : 0);
// printf("%d mx%d\n",u,sam.mx[u]);
}
for(int i=1; i<=n; i++)
{
int pos = sam.rtn; llong ans = 0ll;
for(int j=0; j<str[i].size(); j++)
{
pos = sam.son[pos][str[i][j]-96];
ans += (llong)sam.mx[pos];
// putchar(str[i][j]); printf("pos%d\n",pos); puts("");
}
printf("%lld ",ans);
}
return 0;
}
BZOJ 3277 串 & BZOJ 3473 字符串 (广义后缀自动机、时间复杂度分析、启发式合并、线段树合并、主席树)的更多相关文章
- BZOJ 3473: 字符串 [广义后缀自动机]
3473: 字符串 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 354 Solved: 160[Submit][Status][Discuss] ...
- BZOJ 3473 字符串 ——广义后缀自动机
这题就比较有趣了. 首先匹配一遍,然后统计子树叶子节点中包含大于等于k的节点个数(HH的项链) 然后就可以搞了. 关于合法的情况数,显然是l[i]-l[fa[i]],然后向下下传即可(YY一下). # ...
- BZOJ.2780.[SPOJ8093]Sevenk Love Oimaster(广义后缀自动机)
题目链接 \(Description\) 给定n个模式串,多次询问一个串在多少个模式串中出现过.(字符集为26个小写字母) \(Solution\) 对每个询问串进行匹配最终会达到一个节点,我们需要得 ...
- BZOJ5137&&lg4081(广义后缀自动机,set启发式合并)
BZOJ5137&&lg4081(广义后缀自动机,set启发式合并) 题面 自己找去 HINT 给定多个文本串,让你查询每个文本串中有多少个本质不同的子串且这个子串只出现在当前这个文本 ...
- BZOJ2780(广义后缀自动机,set启发式合并)
BZOJ2780(广义后缀自动机,set启发式合并) 题面 自己找去 HINT 就是给多个文本串,然后每次查询的时候问你这个串在多少个文本串中出现过.因为多个文本串,那么直接就往广义后缀自动机上思考啊 ...
- bzoj 3277 串 && bzoj 3473 字符串 && bzoj 2780 [Spoj]8093 Sevenk Love Oimaster——广义后缀自动机
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3277 https://www.lydsy.com/JudgeOnline/problem.p ...
- bzoj 3277: 串 & bzoj 3473: 字符串【后缀自动机||后缀数组】
建一个广义后缀自动机(每加完一个串都返回root),在parent树上dpsum记录合法长度,打着时间戳往上跳,最后每个串在自动机上跑一变统计答案即可. 后缀数组理解起来可能方便一点,但是难写,就只说 ...
- 【bzoj3277/bzoj3473】串/字符串 广义后缀自动机
题目描述 字符串是oi界常考的问题.现在给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串(注意包括本身). 输入 第一行两个整数n,k.接下来n行每行一个 ...
- BZOJ 4566 [Haoi2016]找相同字符 ——广义后缀自动机
建立广义后缀自动机. 然后统计子树中的siz,需要分开统计 然后对(l[i]-l[fa[i]])*siz[i][0]*siz[i][1]求和即可. #include <cstdio> #i ...
随机推荐
- 【161】BASH相关文章链接
---恢复内容开始--- 1. Linux cat命令详解 --<cat>-- 新建文件 file1.txt,随便输入几行文字 cat 'file1.txt' #显示 'file1.tx ...
- J201700526-hm
プレーンテキスト 纯文本 きも 肝 リレーショナル 亲属的,相关的,有关的; ギャップ 缺口; 间隔; 分歧;
- bzoj 2017: [Usaco2009 Nov]硬币游戏【dp】
废了废了,一个小dp都想不出来 把c数组倒序一下,变成1在最下,设f[i][j]为某一人取完j个之后还剩1~i的硬币,转移的话应该是f[i][j]=max(s[i]-f[i-k][k]),就是1~n的 ...
- SVN安装失败提示
svnserve: error while loading shared libraries: libaprutil-1.so.0: cannot open shared object file: 1 ...
- 关于java日期输出格式
String.format("%tY%tm", new Date(), new Date()): //201905 String.format("%tY-%tm" ...
- Java使用 POI 操作Excel
Java中常见的用来操作 Excel 的方式有2种:JXL和POI.JXL只能对 Excel进行操作,且只支持到 Excel 95-2000的版本.而POI是Apache 的开源项目,由Java编写的 ...
- shell编程中一个空格引起的异常
最近使用shell编写一个备份和替换f服务器程序的脚本replace.sh,初衷是为了节约人力的重复机械的劳动.在脚本编写过程中,由于疏忽多打了一个空格,出现了一个不符合预期的情况. 1.先看一下出问 ...
- rem布局进入页面样式错乱解决
开发项目时候第一次遇到rem布局进入页面瞬间样式错乱问题: //该段js为rem布局应用 如10px = 0.1rem; (function(doc, win) { var docEl = doc.d ...
- 3星|《哈佛商业评论》201708:IT项目风险之大远超你想象
老牌管理学杂志.本期干货偏少,我评3星. 以下是本期一些信息的摘抄: 1:当我们调查被关闭餐馆周边的犯罪规律时,我们发现了与关闭药房同样的现象:被关闭餐馆周围财产犯罪和车内财物偷盗犯罪行为立即出现了上 ...
- Detectron-MaskRCnn:Mask判别和获取前向Mask的标签
对于FCN-SceneParse网络,最后卷积生成N个类别的maps,每个Map都得到图像所有点的单类概率.MaskRCNN的结构与FCN不相同. 参考三个文章: Detectron总结1:Blob的 ...