An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.



Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

Sample Input 1:

5

88 70 61 63 65

Sample Output 1:

70 63 88 61 65

YES

Sample Input 2:

8

88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68

NO

#include<iostream>
#include<math.h>
#include<queue>
using namespace std;
struct node{
int value, depth;
node* l=NULL;
node* r=NULL;
node(int v): value(v), depth(0), l(NULL), r(NULL){
}
};
int getheight(node* root){
return root==NULL?0:max(getheight(root->l), getheight(root->r))+1;
} node* RotationLL(node* root){
node* temp=root->l;
root->l=temp->r;
temp->r=root;
temp->depth=getheight(temp);
root->depth=getheight(root);
return temp;
} node* RotationRR(node* root){
node* temp=root->r;
root->r=temp->l;
temp->l=root;
temp->depth=getheight(temp);
root->depth=getheight(root);
return temp;
} node* RotationLR(node* root){
root->l=RotationRR(root->l);
return RotationLL(root);
} node* RotationRL(node* root){
root->r=RotationLL(root->r);
return RotationRR(root);
} node* insert(node* root, int val){
if(root==NULL){
root=new node(val);
return root;
}else if(val<root->value){
root->l=insert(root->l, val);
if(getheight(root->l)-getheight(root->r)==2)
if(val<root->l->value)
root=RotationLL(root);
else
root=RotationLR(root); }else{
root->r=insert(root->r, val);
if(getheight(root->l)-getheight(root->r)==-2)
if(val<root->r->value)
root=RotationRL(root);
else
root=RotationRR(root);
}
root->depth=getheight(root);
return root;
}
int main(){
int n, flag=0, ans=0, first=0;
cin>>n;
node* root=NULL;
for(int i=0; i<n; i++){
int val;
cin>>val;
root=insert(root, val);
}
queue<node*> q;
q.push(root);
while(!q.empty()){
node* temp=q.front();
first++==0?cout<<temp->value:cout<<" "<<temp->value;
q.pop();
if(temp->l!=NULL){
q.push(temp->l);
flag==1?ans=1:ans=ans;
}
else
flag=1;
if(temp->r!=NULL){
q.push(temp->r);
flag==1?ans=1:ans=ans;
}
else
flag=1;
}
cout<<endl;
ans==1?cout<<"NO"<<endl:cout<<"YES"<<endl;
return 0;
}

PAT 1123 Is It a Complete AVL Tree的更多相关文章

  1. PAT 1123. Is It a Complete AVL Tree (30)

    AVL树的插入,旋转. #include<map> #include<set> #include<ctime> #include<cmath> #inc ...

  2. PAT甲级1123. Is It a Complete AVL Tree

    PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...

  3. 1123 Is It a Complete AVL Tree

    1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...

  4. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  5. PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

  6. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  7. PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. 1123 Is It a Complete AVL Tree(30 分)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  9. PAT甲级1123 Is It a Complete AVL Tree【AVL树】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...

随机推荐

  1. 如何给自己的博客上添加个flash宠物插件

    最近在一些博主的博客上看到一些小宠物的挂件,很有趣,访客到了网站后可以耍耍小宠物,增加网站的趣味性,在功能强大的博客系统上看到有这样的小宠物挂件还是蛮有趣的. 多次差找资料后,终于在http://ww ...

  2. Python split 分割中文

    str8="中国 和 韩国 的区别" # a=str8.find("Python") # print a b=str8.find("和") ...

  3. WebService基于soapheader的身份验证

    用WebService开发接口十分方便.但接口提供的数据不应是对所有人可见的,我们来利用SoapHeader写一个简单的身份验证Demo 目录 创建WebService项目(带SoapHeader) ...

  4. 【FFmpeg】FFmpeg常用基本命令(转载)

    转自:http://www.cnblogs.com/dwdxdy/p/3240167.html 1.分离视频音频流 ffmpeg -i input_file -vcodec copy -an outp ...

  5. bzoj 1731: [Usaco2005 dec]Layout 排队布局【差分约束】

    差分约束裸题,用了比较蠢的方法,先dfs_spfa判负环,再bfs_spfa跑最短路 注意到"奶牛排在队伍中的顺序和它们的编号是相同的",所以\( d_i-d_{i-1}>= ...

  6. Invalid default value for 'create_date' timestamp field

    创建表的语句中有这么一句 `create_date` TIMESTAMP NOT NULL DEFAULT '0000-00-00 00:00:00', 1 之后就报了这个错误. That is be ...

  7. TCP/IP 3握手4挥手

    转:摘自<图解TCP/IP>P204 三次握手与四次挥手的状态转移图如下: 如图,由于第二次握手接收端发送SYN+ACK信号所以握手只用了三次,挥手由于接收端ACK和FIN分两次发的,所以 ...

  8. 关于java的print()

    print方法是类PrintStream的方法成员,而System类有一个static的PrintStream类型的属性成员,名叫out,我们平时写的System.out.print("he ...

  9. Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  10. python模块中的__all__属性

    转自:http://blog.csdn.net/sxingming/article/details/52903377 python模块中的__all__属性,可用于模块导入时限制,如:from mod ...