PAT 1123 Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.


Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.
Sample Input 1:
5
88 70 61 63 65
Sample Output 1:
70 63 88 61 65
YES
Sample Input 2:
8
88 70 61 96 120 90 65 68
Sample Output 2:
88 65 96 61 70 90 120 68
NO
#include<iostream>
#include<math.h>
#include<queue>
using namespace std;
struct node{
int value, depth;
node* l=NULL;
node* r=NULL;
node(int v): value(v), depth(0), l(NULL), r(NULL){
}
};
int getheight(node* root){
return root==NULL?0:max(getheight(root->l), getheight(root->r))+1;
}
node* RotationLL(node* root){
node* temp=root->l;
root->l=temp->r;
temp->r=root;
temp->depth=getheight(temp);
root->depth=getheight(root);
return temp;
}
node* RotationRR(node* root){
node* temp=root->r;
root->r=temp->l;
temp->l=root;
temp->depth=getheight(temp);
root->depth=getheight(root);
return temp;
}
node* RotationLR(node* root){
root->l=RotationRR(root->l);
return RotationLL(root);
}
node* RotationRL(node* root){
root->r=RotationLL(root->r);
return RotationRR(root);
}
node* insert(node* root, int val){
if(root==NULL){
root=new node(val);
return root;
}else if(val<root->value){
root->l=insert(root->l, val);
if(getheight(root->l)-getheight(root->r)==2)
if(val<root->l->value)
root=RotationLL(root);
else
root=RotationLR(root);
}else{
root->r=insert(root->r, val);
if(getheight(root->l)-getheight(root->r)==-2)
if(val<root->r->value)
root=RotationRL(root);
else
root=RotationRR(root);
}
root->depth=getheight(root);
return root;
}
int main(){
int n, flag=0, ans=0, first=0;
cin>>n;
node* root=NULL;
for(int i=0; i<n; i++){
int val;
cin>>val;
root=insert(root, val);
}
queue<node*> q;
q.push(root);
while(!q.empty()){
node* temp=q.front();
first++==0?cout<<temp->value:cout<<" "<<temp->value;
q.pop();
if(temp->l!=NULL){
q.push(temp->l);
flag==1?ans=1:ans=ans;
}
else
flag=1;
if(temp->r!=NULL){
q.push(temp->r);
flag==1?ans=1:ans=ans;
}
else
flag=1;
}
cout<<endl;
ans==1?cout<<"NO"<<endl:cout<<"YES"<<endl;
return 0;
}
PAT 1123 Is It a Complete AVL Tree的更多相关文章
- PAT 1123. Is It a Complete AVL Tree (30)
AVL树的插入,旋转. #include<map> #include<set> #include<ctime> #include<cmath> #inc ...
- PAT甲级1123. Is It a Complete AVL Tree
PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...
- 1123 Is It a Complete AVL Tree
1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]
题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...
- 1123. Is It a Complete AVL Tree (30)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- 1123 Is It a Complete AVL Tree(30 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级1123 Is It a Complete AVL Tree【AVL树】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...
随机推荐
- 杂项-Java:Druod Monitor
ylbtech-杂项-Java:Druid Monitor 1.返回顶部 1. https://www.cnblogs.com/wanghuijie/p/druid_monitor.html 2. 2 ...
- 【174】C#添加非默认字体
参考:C# WinForm程序安装字体或直接调用非注册字体 参考:百度知道 在Debug文件夹下面新建一个font的文件夹,然后将字体的文件复制到里面,使用的时候,直接调用字体文件! private ...
- E20180120-hm
derive vt. 得到,导出; 源于,来自; (从…中) 提取; hierarchy n. [计] 分层,层次; 等级制度; 统治集团; 天使的级别或等级; inheritance n. 继承 ...
- bzoj 1034: [ZJOI2008]泡泡堂BNB【贪心】
是贪心 先把两个数组排序,然后贪心的选让a数组占优的(如果没有就算输),这是最大值,最小值是2n-贪心选b数组占优 #include<iostream> #include<cstdi ...
- Classic BADI总结
这里对sap Classic Badi 做一下总结,虽然已经是过时的技术了. Classic BADI的创建 Classic BADI的实施 Classic BADI的调用及运行原理 New BADI ...
- idea工程jdk设置问题
经常用idea的朋友,会遇到一个问题,那就是你在单测的时候,会报一个jdk的错,截图如下: 我的解决方案是在pom.xml里配置一个节点: <properties> <maven.c ...
- sed -i 报错的情况
是因为替换的变量中带/的目录名 将原来的/改成#
- windows2008 rs+sql 2008 下配置站点权限
几点注意 Windows 2008 iis7.5 1 建立应用程序池 2 文件目录的权限加上 IIS AppPool\应用程序池名称 (找不到直接录入) 3 文件目录要给 IUser权限,不然出错. ...
- PHP几个常用的概率算法
算法一 /** * 全概率计算 * * @param array $p array('a'=>0.5,'b'=>0.2,'c'=>0.4) * @return string 返回上面 ...
- wparam , lparam 传递消息
01.WM_PAINT消息 LOWORD(lParam)是客户区的宽,HIWORD(lParam)是客户区的高 02.滚动条WM_VSCROLL或WM_HSCROLL消息 LOWORD(wParam) ...