An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.



Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

Sample Input 1:

5

88 70 61 63 65

Sample Output 1:

70 63 88 61 65

YES

Sample Input 2:

8

88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68

NO

#include<iostream>
#include<math.h>
#include<queue>
using namespace std;
struct node{
int value, depth;
node* l=NULL;
node* r=NULL;
node(int v): value(v), depth(0), l(NULL), r(NULL){
}
};
int getheight(node* root){
return root==NULL?0:max(getheight(root->l), getheight(root->r))+1;
} node* RotationLL(node* root){
node* temp=root->l;
root->l=temp->r;
temp->r=root;
temp->depth=getheight(temp);
root->depth=getheight(root);
return temp;
} node* RotationRR(node* root){
node* temp=root->r;
root->r=temp->l;
temp->l=root;
temp->depth=getheight(temp);
root->depth=getheight(root);
return temp;
} node* RotationLR(node* root){
root->l=RotationRR(root->l);
return RotationLL(root);
} node* RotationRL(node* root){
root->r=RotationLL(root->r);
return RotationRR(root);
} node* insert(node* root, int val){
if(root==NULL){
root=new node(val);
return root;
}else if(val<root->value){
root->l=insert(root->l, val);
if(getheight(root->l)-getheight(root->r)==2)
if(val<root->l->value)
root=RotationLL(root);
else
root=RotationLR(root); }else{
root->r=insert(root->r, val);
if(getheight(root->l)-getheight(root->r)==-2)
if(val<root->r->value)
root=RotationRL(root);
else
root=RotationRR(root);
}
root->depth=getheight(root);
return root;
}
int main(){
int n, flag=0, ans=0, first=0;
cin>>n;
node* root=NULL;
for(int i=0; i<n; i++){
int val;
cin>>val;
root=insert(root, val);
}
queue<node*> q;
q.push(root);
while(!q.empty()){
node* temp=q.front();
first++==0?cout<<temp->value:cout<<" "<<temp->value;
q.pop();
if(temp->l!=NULL){
q.push(temp->l);
flag==1?ans=1:ans=ans;
}
else
flag=1;
if(temp->r!=NULL){
q.push(temp->r);
flag==1?ans=1:ans=ans;
}
else
flag=1;
}
cout<<endl;
ans==1?cout<<"NO"<<endl:cout<<"YES"<<endl;
return 0;
}

PAT 1123 Is It a Complete AVL Tree的更多相关文章

  1. PAT 1123. Is It a Complete AVL Tree (30)

    AVL树的插入,旋转. #include<map> #include<set> #include<ctime> #include<cmath> #inc ...

  2. PAT甲级1123. Is It a Complete AVL Tree

    PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...

  3. 1123 Is It a Complete AVL Tree

    1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...

  4. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  5. PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

  6. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  7. PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. 1123 Is It a Complete AVL Tree(30 分)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  9. PAT甲级1123 Is It a Complete AVL Tree【AVL树】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...

随机推荐

  1. MIPI接口

    接口 分辨率 说明 RGB 800*480以下 大部分AP均支持RGB接口,此类LCD在低端平板广泛使用 LVDS 1024*768及以上 主要通过转换芯片将RGB等专程LVDS来支持:少量AP直接集 ...

  2. navicat导入.sql文件出错2006-MySQLserver has gone away

    方式一(验证无误): 找到mysql安装目录下的my.ini配置文件,加入以下代码: max_allowed_packet=500M wait_timeout=288000 interactive_t ...

  3. conda命令不能用的问题

    在Windows下安装了Anaconda3-5.0.1-Windows-x86.exe 但是在cmd端下,打命令conda没反应 打pip显示如下错误 这是由于cmd编码为gbk的问题导致的 解决方案 ...

  4. [App Store Connect帮助]四、添加 App 图标、App 预览和屏幕快照(4)为其他设备尺寸和本地化内容添加屏幕快照和预览

    如果您不想在其他设备尺寸上使用经过缩放的高分辨率屏幕快照或 App 预览,您可以使用“媒体管理”为其他设备尺寸和本地化内容添加自定屏幕快照. 屏幕快照和 App 预览仅在 App 状态为可编辑时才能进 ...

  5. [Swift通天遁地]一、超级工具-(9)在地图视图MKMapView中添加支持交互动作的标注图标

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  6. Akka源码分析-Cluster-ClusterClient

    ClusterClient可以与某个集群通信,而本身节点不必是集群的一部分.它只需要知道一个或多个节点的位置作为联系节点.它会跟ClusterReceptionist 建立连接,来跟集群中的特定节点发 ...

  7. Rabin_Karp(hash) HDOJ 1711 Number Sequence

    题目传送门 /* Rabin_Karp:虽说用KMP更好,但是RK算法好理解.简单说一下RK算法的原理:首先把模式串的哈希值算出来, 在文本串里不断更新模式串的长度的哈希值,若相等,则找到了,否则整个 ...

  8. VS中设置xml智能提示

    1.第一步:将xsd文件复制到VS的安装目录下 默认安装目录为:C:\Program Files (x86)\Microsoft Visual Studio 12.0\Xml\Schemas 2.第二 ...

  9. SpringMvc下的文件上传

    首先是springmvc.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=&q ...

  10. mongo 3.4分片集群系列之八:分片管理

    这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...