4 Values whose Sum is 0
Time Limit: 15000MS   Memory Limit: 228000K
Total Submissions: 23757   Accepted: 7192
Case Time Limit: 5000MS

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

Source

[Submit]   [Go Back]   [Status]  
[Discuss]

有时候问题的规模比较大,无法枚举所有元素的组合,但能够枚举一般元素的组合。此时,将问题拆成两半后分别枚举,再合并他们的结果这一方法往往非常有效。

//折半枚举(双向搜索)poj2785
#include <iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=5005;
int n;
ll a[maxn],b[maxn],c[maxn],d[maxn];
ll cd[maxn*maxn]; void solve()
{
//枚举cd的组合
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cd[i*n+j]=c[i]+d[j];
}
}
sort(cd,cd+n*n);
ll res=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
ll CD=-(a[i]+b[j]);
//二分搜索取出cd中和为CD的部分
res+=upper_bound(cd,cd+n*n,CD)-lower_bound(cd,cd+n*n,CD);
}
}
printf("%lld\n",res);
} int main()
{
cin>>n;
for(int j=0;j<n;j++)
{
cin>>a[j]>>b[j]>>c[j]>>d[j];
}
solve();
return 0;
}

折半枚举(双向搜索)poj27854 Values whose Sum is 0的更多相关文章

  1. POJ2785-4 Values whose Sum is 0

    传送门:http://poj.org/problem?id=2785 Description The SUM problem can be formulated as follows: given f ...

  2. POJ 2785 4 Values whose Sum is 0(折半枚举+二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25675   Accep ...

  3. UVA 1152 4 Values whose Sum is 0 (枚举+中途相遇法)(+Java版)(Java手撕快排+二分)

    4 Values whose Sum is 0 题目链接:https://cn.vjudge.net/problem/UVA-1152 ——每天在线,欢迎留言谈论. 题目大意: 给定4个n(1< ...

  4. POJ:2785-4 Values whose Sum is 0(双向搜索)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 26974 Accepted: ...

  5. [poj2785]4 Values whose Sum is 0(hash或二分)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 19322 Accepted: ...

  6. UVA1152-4 Values whose Sum is 0(分块)

    Problem UVA1152-4 Values whose Sum is 0 Accept: 794  Submit: 10087Time Limit: 9000 mSec Problem Desc ...

  7. 4 Values whose Sum is 0(二分)

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 21370   Accep ...

  8. POJ 2785 4 Values whose Sum is 0(想法题)

    传送门 4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 20334   A ...

  9. POJ 2785 4 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 13069   Accep ...

随机推荐

  1. ****Call to a member function item() on a non-object

    A PHP Error was encountered Severity: Error Message: Call to a member function item() on a non-objec ...

  2. JVM 总结

    面试 java 虚拟机 jvm 基础 jvm Write Once Run EveryWhere >jar 包可以在任何兼容jvm上运行 >jvm 适配器 屏蔽掉底层差异 >内存管理 ...

  3. 洛谷——P1044 栈

    P1044 栈——卡特兰数 题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈) ...

  4. php配置(php7.3)

    [PHP] ;;;;;;;;;;;;;;;;;;; ; About php.ini ; ;;;;;;;;;;;;;;;;;;; ; PHP's initialization file, general ...

  5. SLF4J 和 Logback 在 Maven 项目中的使用方法

    原文:http://blog.csdn.net/llmmll08/article/details/70217120 本文介绍 SLF4J 和 Logback 在 Maven 项目中的用法,包括日志框架 ...

  6. 【转】c++中placement new操作符

    new:指我们在C++里通常用到的运算符,比如A* a = new A;  对于new来说,有new和::new之分,前者位于std operator new():指对new的重载形式,它是一个函数, ...

  7. Chrom开发者工具详解

    Chrome开发者工具不完全指南(一.基础功能篇) http://www.mamicode.com/info-detail-863534.html Chrome开发者工具不完全指南(二.进阶篇) ht ...

  8. UVA 567 Risk【floyd】

    题目链接: option=com_onlinejudge&Itemid=8&page=show_problem&problem=508">https://uva ...

  9. P-Called-Party-ID头域

    典型的proxy server在路由 INVITE 请求到目标时插入 P-Called-Party-ID 头域.该头域用 porxy 收到请求的 Request-URI 填写. UAS 从几个已注冊的 ...

  10. Linux下的文件夹创建命令使用实践

    [文章摘要] 本文以实际的C源程序为样例,介绍了Linux下的文件夹创建命令(mkdir)的用法.为相关开发工作的开展提供了故意的參考. [关键词] C语言  Linux  文件夹创建  makefi ...