Going Home

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 3443    Accepted Submission(s): 1763

Problem Description
On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters
a house. The task is complicated with the restriction that each house can accommodate only one little man. 



Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates
there is a little man on that point. 



You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.
 
Input
There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both
N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.
 
Output
For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay. 
 
Sample Input
2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0
 
Sample Output
2
10
28
 

第一道费用流。 O(∩_∩)O~~

题意:一个N*M地图上有同样数量的字符H和字符m。m代表一个 人,H代表一个房子。人到房子的花销是它们在图中的曼哈顿距离,问你让全部人回到房子所须要的最小费用(一个房子仅仅能容纳一个人)。

思路:设置超级源点source 连接全部字符H,容量为1。费用为0。每一个字符H向全部字符m连边,容量为1,费用为它们的曼哈顿距离。最后每一个字符m向超级汇点sink连边。容量为1,费用为0。

最后source到sink跑一遍最小费用最大流就ok了。

(我建边时把字符H看做人了,所以建的反向边,对这道题没有影响)

AC代码:

#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define MAXN 200+10
#define MAXM 80000+100
#define INF 0x3f3f3f3f
using namespace std;
struct Edge
{
int from, to, cap, flow, cost, next;
};
Edge edge[MAXM];
int head[MAXN], edgenum;
int pre[MAXN], dist[MAXN];
bool vis[MAXN];
int N, M;
int source, sink;//超级源点 超级汇点
void init()
{
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v, int w, int c)
{
Edge E1 = {u, v, w, 0, c, head[u]};
edge[edgenum] = E1;
head[u] = edgenum++;
Edge E2 = {v, u, 0, 0, -c, head[v]};
edge[edgenum] = E2;
head[v] = edgenum++;
}
int dis(int x1, int y1, int x2, int y2)
{
return abs(x1 - x2) + abs(y1 - y2);
}
struct Node
{
int x, y;
};
Node m[110], H[110];//存储字符坐标
int m_cnt;//m字符计数器
int H_cnt;//H字符计数器
void getMap()
{
m_cnt = H_cnt = 0;
char str[110][110];
for(int i = 0; i < N; i++)
{
scanf("%s", str[i]);
for(int j = 0; j < M; j++)
{
if(str[i][j] == 'm')
{
++m_cnt;
m[m_cnt].x = i;
m[m_cnt].y = j;
}
if(str[i][j] == 'H')
{
++H_cnt;
H[H_cnt].x = i;
H[H_cnt].y = j;
}
}
}
int k = m_cnt;//人数 或者 房子数
source = 0;
sink = 2*k+1;
for(int i = 1; i <= k; i++)
{
addEdge(source, i, 1, 0);
addEdge(i + k, sink, 1, 0);
for(int j = 1; j <= k; j++)
{
int d = dis(H[i].x, H[i].y, m[j].x, m[j].y);
addEdge(i, j + k, 1, d);
}
}
}
bool SPFA(int s, int t)//寻找花销最少的路径
{
queue<int> Q;
memset(dist, INF, sizeof(dist));
memset(vis, false, sizeof(vis));
memset(pre, -1, sizeof(pre));
dist[s] = 0;
vis[s] = true;
Q.push(s);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = false;
for(int i = head[u]; i != -1; i = edge[i].next)
{
Edge E = edge[i];
if(dist[E.to] > dist[u] + E.cost && E.cap > E.flow)//能够松弛 且 没有满流
{
dist[E.to] = dist[u] + E.cost;
pre[E.to] = i;//记录前驱边 的编号
if(!vis[E.to])
{
vis[E.to] = true;
Q.push(E.to);
}
}
}
}
return pre[t] != -1;//可达返回true
}
void MCMF(int s, int t, int &cost, int &flow)
{
flow = 0;//总流量
cost = 0;//总费用
while(SPFA(s, t))//每次寻找花销最小的路径
{
int Min = INF;
//通过反向弧 在源点到汇点的最少花费路径 找最小增广流
for(int i = pre[t]; i != -1; i = pre[edge[i^1].to])
{
Edge E = edge[i];
Min = min(Min, E.cap - E.flow);
}
//增广
for(int i = pre[t]; i != -1; i = pre[edge[i^1].to])
{
edge[i].flow += Min;
edge[i^1].flow -= Min;
cost += edge[i].cost * Min;//增广流的花销
}
flow += Min;//流量累加
}
}
int main()
{
while(scanf("%d%d", &N, &M), N||M)
{
init();
getMap();
int cost, flow;
MCMF(source, sink, cost, flow);
printf("%d\n", cost);
}
return 0;
}

KM算法: 重刷

求最大流。用负权,最后结果取反。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define INF 10000000
using namespace std;
int lx[110], ly[110];
int Map[110][110];
bool visx[110], visy[110];
int slack[110];
int match[110];
int nx, ny;
int N, M;
char str[110][110];
int dis(int x1, int y1, int x2, int y2)
{
return abs(x1 - x2) + abs(y1 - y2);
}
struct Node
{
int x, y;
};
Node m[110], H[110];//存储字符坐标
int m_cnt;//m字符计数器
int H_cnt;//H字符计数器
void getMap()
{
m_cnt = H_cnt = 0;
char str[110][110];
for(int i = 0; i < N; i++)
{
scanf("%s", str[i]);
for(int j = 0; j < M; j++)
{
if(str[i][j] == 'm')
{
++m_cnt;
m[m_cnt].x = i;
m[m_cnt].y = j;
}
if(str[i][j] == 'H')
{
++H_cnt;
H[H_cnt].x = i;
H[H_cnt].y = j;
}
}
}
int k = m_cnt;//人数 或者 房子数
nx = ny = k;
for(int i = 1; i <= k; i++)
{
for(int j = 1; j <= k; j++)
{
int d = dis(H[i].x, H[i].y, m[j].x, m[j].y);
Map[i][j] = -d;
}
}
}
int DFS(int x)
{
visx[x] = true;
for(int y = 1; y <= ny; y++)
{
if(visy[y]) continue;
int t = lx[x] + ly[y] - Map[x][y];
if(t == 0)
{
visy[y] = true;
if(match[y] == -1 || DFS(match[y]))
{
match[y] = x;
return 1;
}
}
else if(slack[y] > t)
slack[y] = t;
}
return 0;
}
void KM()
{
memset(match, -1, sizeof(match));
memset(ly, 0, sizeof(ly));
for(int x = 1; x <= nx; x++)
{
lx[x] = -INF;
for(int y = 1; y <= ny; y++)
lx[x] = max(lx[x], Map[x][y]);
}
for(int x = 1; x <= nx; x++)
{
for(int i = 1; i <= ny; i++)
slack[i] = INF;
while(1)
{
memset(visx, false, sizeof(visx));
memset(visy, false, sizeof(visy));
if(DFS(x)) break;
int d = INF;
for(int i = 1; i <= ny; i++)
{
if(!visy[i] && slack[i] < d)
d = slack[i];
}
for(int i = 1; i <= nx; i++)
{
if(visx[i])
lx[i] -= d;
}
for(int i = 1; i <= ny; i++)
{
if(visy[i])
ly[i] += d;
else
slack[i] -= d;
}
}
}
int ans = 0;
for(int i = 1; i <= ny; i++)
ans += Map[match[i]][i];
printf("%d\n", -ans);
}
int main()
{
while(scanf("%d%d", &N, &M), N||M)
{
getMap();
KM();
}
return 0;
}

hdoj 1533 Going Home 【最小费用最大流】【KM入门题】的更多相关文章

  1. hdu 1533 Going Home 最小费用最大流 (模板题)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  2. hdu 1533 Going Home 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...

  3. hdu 1533 Going Home 最小费用最大流 入门题

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  4. POJ 2195 & HDU 1533 Going Home(最小费用最大流)

    这就是一道最小费用最大流问题 最大流就体现到每一个'm'都能找到一个'H',但是要在这个基础上面加一个费用,按照题意费用就是(横坐标之差的绝对值加上纵坐标之差的绝对值) 然后最小费用最大流模板就是再用 ...

  5. poj2135最小费用最大流经典模板题

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13509   Accepted: 5125 Descri ...

  6. hdoj 3488 Tour 【最小费用最大流】【KM算法】

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submi ...

  7. Minimum Cost(最小费用最大流,好题)

    Minimum Cost http://poj.org/problem?id=2516 Time Limit: 4000MS   Memory Limit: 65536K Total Submissi ...

  8. POJ--2516--Minimum Cost【最小费用最大流】

    链接:http://poj.org/problem?id=2516 题意:有k种货物,n个客户对每种货物有一定需求量,有m个仓库.每一个仓库里有一定数量的k种货物.然后k个n*m的矩阵,告诉从各个仓库 ...

  9. POJ 3422 Kaka's Matrix Travels 【最小费用最大流】

    题意: 卡卡有一个矩阵,从左上角走到右下角,卡卡每次只能向右或者向下.矩阵里边都是不超过1000的正整数,卡卡走过的元素会变成0,问卡卡可以走k次,问卡卡最多能积累多少和. 思路: 最小费用最大流的题 ...

  10. POJ2135 最小费用最大流模板题

    练练最小费用最大流 此外此题也是一经典图论题 题意:找出两条从s到t的不同的路径,距离最短. 要注意:这里是无向边,要变成两条有向边 #include <cstdio> #include ...

随机推荐

  1. SQL使用exists时的多种写法

    from test; go from test; go 下面这种效率明显高不少.

  2. QT+模态对话框与非模态对话框

    #include "mainwindow.h" #include <QMenuBar> #include <QMenu> #include <QAct ...

  3. “打开ftp服务器上的文件夹时发生错误,请检查是否有权限访问该文件夹"

    阿里云虚拟主机上传网站程序 问题场景:网页制作完成后,程序需上传至虚拟主机 注意事项: 1.Windows系统的主机请将全部网页文件直接上传到FTP根目录,即 / . 2. 如果网页文件较多,上传较慢 ...

  4. gcc编译详解

    GCC(GNU Compiler Collection,GNU编译器套件),是由 GNU 开发的编程语言编译器.它是以GPL许可证所发行的自由软件,也是 GNU计划的关键部分.GCC原本作为GNU操作 ...

  5. 一个关于vue+mysql+express的全栈项目(三)------ 登录注册功能的实现(已经密码安全的设计)

    本系列文章,主要是一个前端的视角来实现一些后端的功能,所以不会讲太多的前端东西,主要是分享做这个项目学到的一些东西,,,,, 好了闲话不多说,我们开始搭建后端服务,这里我们采用node的express ...

  6. CentOS 7下安装Composer + Laravel

    1.wget https://dl.laravel-china.org/composer.phar -O /usr/local/bin/composer chmod a+x /usr/local/bi ...

  7. window查看哪些端口被占用命令

    管理员方式运行cmd netstat -n

  8. Food Delivery (区间DP)

    When we are focusing on solving problems, we usually prefer to stay in front of computers rather tha ...

  9. [POJ2446] Chessboard(二分图最大匹配-匈牙利算法)

    传送门 把所有非障碍的相邻格子彼此连一条边,然后求二分图最大匹配,看 tot * 2 + k 是否等于 n * m 即可. 但是连边不能重复,比如 a 格子 和 b 格子 相邻,不能 a 连 b ,b ...

  10. bzoj2190 [SDOI2008]仪仗队 - 筛法 - 欧拉函数

    作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图).    ...