M斐波那契数列

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 2598    Accepted Submission(s): 774

Problem Description
M斐波那契数列F[n]是一种整数数列,它的定义如下:

F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )

现在给出a, b, n,你能求出F[n]的值吗?

 
Input
输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
 
Output
对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
 
Sample Input
0 1 0
6 10 2
 
Sample Output
0
60
 

水题一道
代码:
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define MM(x) memset(x,0,sizeof(x))
#define MMINF(x) memset(x,INF,sizeof(x))
typedef long long LL;
const double PI=acos(-1.0);
const LL mod=1000000007;
struct mat
{
LL pos[2][2];
mat(){MM(pos);}
};
mat operator*(const mat &a,const mat &b)
{
mat c;
for (int i=0; i<2; i++)
{
for (int j=0; j<2; j++)
{
for (int k=0; k<2; k++)
c.pos[i][j]+=(a.pos[i][k]*b.pos[k][j])%(mod-1);
}
}
return c;
}
mat operator^(mat a,LL b)
{
mat r;
for (int i=0; i<2; i++)
r.pos[i][i]=1;
while (b!=0)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
LL qpow(LL a,LL b)
{
LL r=1;
a%=mod;
while (b)
{
if(b&1)
r=(r*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return r;
}
int main(void)
{
LL pa,pb;
LL a,b,c,n;
while (~scanf("%I64d%I64d%I64d",&a,&b,&n))
{
if(n==0)
printf("%I64d\n",a);
else if(n==1)
printf("%I64d\n",b);
else
{
mat t,one;
t.pos[0][0]=1;
t.pos[0][1]=1;
t.pos[1][0]=1;
one.pos[0][0]=1;
one.pos[1][0]=1;
t=t^(n-2);
one=t*one;
pa=one.pos[1][0]%(mod-1);
pb=one.pos[0][0]%(mod-1);
printf("%I64d\n",(qpow(a,pa)*qpow(b,pb))%mod);
}
}
return 0;
}

HDU——4549M斐波那契数列(矩阵快速幂+快速幂+费马小定理)的更多相关文章

  1. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  2. hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem ...

  3. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  4. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  5. 51nod1242 斐波那契数列 矩阵快速幂

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...

  6. POJ3070 斐波那契数列 矩阵快速幂

    题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...

  7. hdu4549 M斐波那契数列 矩阵快速幂+快速幂

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...

  8. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  9. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

随机推荐

  1. git处理时的问题

    1. 在node.js开发的时候常常会遇到从别人的远程仓库中clone时出现文件名过长的错误, 或则是在本地npm下载之后的文件进行上传到自己的远程仓库的时候会出现 File too long的情况, ...

  2. Date/Time Functions and Operators (Postgres)

            http://www.postgresql.org/docs/9.1/static/functions-datetime.html   Search Documentation:  H ...

  3. 用”人话”解释CNN —— 对单个特征图进行视觉化

    转载自:http://nooverfit.com/wp/pycon-2016-tensorflow-研讨会总结-tensorflow-手把手入门-用人话解释cnn 首先什么是CNN? 其实, 用”人话 ...

  4. WPF中窗体在同一个位置实现不同页面切换

    要想在WPF窗体中实现不同页面切换,我们就需要用到ContentControl这个控件,这个控件的位置和大小就是你要显示页面的位置和大小. 下面举例说明: Xaml: <Grid> < ...

  5. caffe修改需要的东西 6:40

    https://blog.csdn.net/zhaishengfu/article/details/51971768?locationNum=3&fps=1

  6. eltwise层

    http://blog.csdn.net/u013989576/article/details/73294131 layer { name: "fuse" type: " ...

  7. Spring启动流程—源码解读

    https://blog.csdn.net/yangliuhbhd/article/details/80790761 Spring的AbstractApplicationContext的refresh ...

  8. java面试宝典第四弹

    动态代理 1. 什么是代理 我们大家都知道微商代理,简单地说就是代替厂家卖商品,厂家“委托”代理为其销售商品.关于微商代理,首先我们从他们那里买东西时通常不知道背后的厂家究竟是谁,也就是说,“委托者” ...

  9. react 列表渲染

    https://reactjs.org/docs/lists-and-keys.html#keys 以下代码运行会报错:Warning: Each child in an array or itera ...

  10. 转载:jquery.ajax之beforeSend方法使用介绍

    常见的一种效果,在用ajax请求时,没有返回前会出现前出现一个转动的loading小图标或者“内容加载中..”,用来告知用户正在请求数据.这个就可以用beforeSend方法来实现. 下载demo:a ...