假设Spark的部署方式选择Standalone,一个採用Master/Slaves的典型架构,那么Master是有SPOF(单点故障,Single Point of Failure)。Spark能够选用ZooKeeper来实现HA。

ZooKeeper提供了一个Leader Election机制,利用这个机制能够保证尽管集群存在多个Master可是唯独一个是Active的。其它的都是Standby。当Active的Master出现问题时,另外的一个Standby Master会被选举出来。

因为集群的信息,包含Worker。 Driver和Application的信息都已经持久化到文件系统,因此在切换的过程中只会影响新Job的提交,对于正在进行的Job没有不论什么的影响。加入ZooKeeper的集群总体架构例如以下图所看到的。

1. Master的重新启动策略

Master在启动时。会依据启动參数来决定不同的Master故障重新启动策略:

  1. ZOOKEEPER实现HA
  2. FILESYSTEM:实现Master无数据丢失重新启动,集群的执行时数据会保存到本地/网络文件系统上
  3. 丢弃全部原来的数据重新启动

Master::preStart()能够看出这三种不同逻辑的实现。

override def preStart() {
logInfo("Starting Spark master at " + masterUrl)
...
//persistenceEngine是持久化Worker,Driver和Application信息的,这样在Master又一次启动时不会影响
//已经提交Job的执行
 persistenceEngine = RECOVERY_MODE match {
case "ZOOKEEPER" =>
logInfo("Persisting recovery state to ZooKeeper")
new ZooKeeperPersistenceEngine(SerializationExtension(context.system), conf)
case "FILESYSTEM" =>
logInfo("Persisting recovery state to directory: " + RECOVERY_DIR)
new FileSystemPersistenceEngine(RECOVERY_DIR, SerializationExtension(context.system))
case _ =>
new BlackHolePersistenceEngine()
}
//leaderElectionAgent负责Leader的选取。
leaderElectionAgent = RECOVERY_MODE match {
case "ZOOKEEPER" =>
context.actorOf(Props(classOf[ZooKeeperLeaderElectionAgent], self, masterUrl, conf))
case _ => // 唯独一个Master的集群。那么当前的Master就是Active的
 context.actorOf(Props(classOf[MonarchyLeaderAgent], self))
}
}

RECOVERY_MODE是一个字符串,能够从spark-env.sh中去设置。

val RECOVERY_MODE = conf.get("spark.deploy.recoveryMode", "NONE")

假设不设置spark.deploy.recoveryMode的话,那么集群的全部执行数据在Master重新启动是都会丢失。这个结论是从BlackHolePersistenceEngine的实现得出的。

private[spark] class BlackHolePersistenceEngine extends PersistenceEngine {
override def addApplication(app: ApplicationInfo) {}
override def removeApplication(app: ApplicationInfo) {}
override def addWorker(worker: WorkerInfo) {}
override def removeWorker(worker: WorkerInfo) {}
override def addDriver(driver: DriverInfo) {}
override def removeDriver(driver: DriverInfo) {} override def readPersistedData() = (Nil, Nil, Nil)
}

它把全部的接口实现为空。

PersistenceEngine是一个trait。作为对照,能够看一下ZooKeeper的实现。

class ZooKeeperPersistenceEngine(serialization: Serialization, conf: SparkConf)
extends PersistenceEngine
with Logging
{
val WORKING_DIR = conf.get("spark.deploy.zookeeper.dir", "/spark") + "/master_status"
val zk: CuratorFramework = SparkCuratorUtil.newClient(conf) SparkCuratorUtil.mkdir(zk, WORKING_DIR)
// 将app的信息序列化到文件WORKING_DIR/app_{app.id}中
override def addApplication(app: ApplicationInfo) {
serializeIntoFile(WORKING_DIR + "/app_" + app.id, app)
} override def removeApplication(app: ApplicationInfo) {
zk.delete().forPath(WORKING_DIR + "/app_" + app.id)
}

Spark使用的并非ZooKeeper的API,而是使用的org.apache.curator.framework.CuratorFramework 和 org.apache.curator.framework.recipes.leader.{LeaderLatchListener, LeaderLatch} 。Curator在ZooKeeper上做了一层非常友好的封装。

2. 集群启动參数的配置

简单总结一下參数的设置,通过上述代码的分析。我们知道为了使用ZooKeeper至少应该设置一下參数(实际上,只须要设置这些參数。通过设置spark-env.sh:

spark.deploy.recoveryMode=ZOOKEEPER
spark.deploy.zookeeper.url=zk_server_1:2181,zk_server_2:2181
spark.deploy.zookeeper.dir=/dir
// OR 通过一下方式设置
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER "
export SPARK_DAEMON_JAVA_OPTS="${SPARK_DAEMON_JAVA_OPTS} -Dspark.deploy.zookeeper.url=zk_server1:2181,zk_server_2:2181"

各个參数的意义:

參数 默认值 含义
spark.deploy.recoveryMode NONE 恢复模式(Master又一次启动的模式)。有三种:1, ZooKeeper, 2。 FileSystem, 3 NONE
spark.deploy.zookeeper.url ZooKeeper的Server地址
spark.deploy.zookeeper.dir /spark ZooKeeper 保存集群元数据信息的文件文件夹,包含Worker,Driver和Application。

3. CuratorFramework简单介绍

CuratorFramework极大的简化了ZooKeeper的使用,它提供了high-level的API,而且基于ZooKeeper加入了非常多特性,包含

  • 自己主动连接管理:连接到ZooKeeper的Client有可能会连接中断。Curator处理了这样的情况。对于Client来说自己主动重连是透明的。
  • 简洁的API:简化了原生态的ZooKeeper的方法,事件等。提供了一个简单易用的接口。
  • Recipe的实现(很多其它介绍请点击Recipes):
    • Leader的选择
    • 共享锁
    • 缓存和监控
    • 分布式的队列
    • 分布式的优先队列

CuratorFrameworks通过CuratorFrameworkFactory来创建线程安全的ZooKeeper的实例。

CuratorFrameworkFactory.newClient()提供了一个简单的方式来创建ZooKeeper的实例,能够传入不同的參数来对实例进行全然的控制。获取实例后,必须通过start()来启动这个实例。在结束时,须要调用close()。

/**
* Create a new client
*
*
* @param connectString list of servers to connect to
* @param sessionTimeoutMs session timeout
* @param connectionTimeoutMs connection timeout
* @param retryPolicy retry policy to use
* @return client
*/
public static CuratorFramework newClient(String connectString, int sessionTimeoutMs, int connectionTimeoutMs, RetryPolicy retryPolicy)
{
return builder().
connectString(connectString).
sessionTimeoutMs(sessionTimeoutMs).
connectionTimeoutMs(connectionTimeoutMs).
retryPolicy(retryPolicy).
build();
}

须要关注的还有两个Recipe:org.apache.curator.framework.recipes.leader.{LeaderLatchListener, LeaderLatch}。

首先看一下LeaderlatchListener。它在LeaderLatch状态变化的时候被通知:

  1. 在该节点被选为Leader的时候,接口isLeader()会被调用
  2. 在节点被剥夺Leader的时候,接口notLeader()会被调用

因为通知是异步的。因此有可能在接口被调用的时候。这个状态是准确的。须要确认一下LeaderLatch的hasLeadership()是否的确是true/false。这一点在接下来Spark的实现中能够得到体现。

/**
* LeaderLatchListener can be used to be notified asynchronously about when the state of the LeaderLatch has changed.
*
* Note that just because you are in the middle of one of these method calls, it does not necessarily mean that
* hasLeadership() is the corresponding true/false value. It is possible for the state to change behind the scenes
* before these methods get called. The contract is that if that happens, you should see another call to the other
* method pretty quickly.
*/
public interface LeaderLatchListener
{
/**
* This is called when the LeaderLatch's state goes from hasLeadership = false to hasLeadership = true.
*
* Note that it is possible that by the time this method call happens, hasLeadership has fallen back to false. If
* this occurs, you can expect {@link #notLeader()} to also be called.
*/
public void isLeader(); /**
* This is called when the LeaderLatch's state goes from hasLeadership = true to hasLeadership = false.
*
* Note that it is possible that by the time this method call happens, hasLeadership has become true. If
* this occurs, you can expect {@link #isLeader()} to also be called.
*/
public void notLeader();
}

LeaderLatch负责在众多连接到ZooKeeper Cluster的竞争者中选择一个Leader。

Leader的选择机制能够看ZooKeeper的详细实现,LeaderLatch这是完毕了非常好的封装。我们只须要要知道在初始化它的实例后。须要通过

public class LeaderLatch implements Closeable
{
private final Logger log = LoggerFactory.getLogger(getClass());
private final CuratorFramework client;
private final String latchPath;
private final String id;
private final AtomicReference<State> state = new AtomicReference<State>(State.LATENT);
private final AtomicBoolean hasLeadership = new AtomicBoolean(false);
private final AtomicReference<String> ourPath = new AtomicReference<String>();
private final ListenerContainer<LeaderLatchListener> listeners = new ListenerContainer<LeaderLatchListener>();
private final CloseMode closeMode;
private final AtomicReference<Future<?>> startTask = new AtomicReference<Future<? >>();
.
.
.
/**
* Attaches a listener to this LeaderLatch
* <p/>
* Attaching the same listener multiple times is a noop from the second time on.
* <p/>
* All methods for the listener are run using the provided Executor. It is common to pass in a single-threaded
* executor so that you can be certain that listener methods are called in sequence, but if you are fine with
* them being called out of order you are welcome to use multiple threads.
*
* @param listener the listener to attach
*/
public void addListener(LeaderLatchListener listener)
{
listeners.addListener(listener);
}

通过addListener能够将我们实现的Listener加入到LeaderLatch。在Listener里。我们在两个接口里实现了被选为Leader或者被剥夺Leader角色时的逻辑就可以。

4. ZooKeeperLeaderElectionAgent的实现

实际上因为有Curator的存在。Spark实现Master的HA就变得非常easy了,ZooKeeperLeaderElectionAgent实现了接口LeaderLatchListener。在isLeader()确认所属的Master被选为Leader后,向Master发送消息ElectedLeader,Master会将自己的状态改为ALIVE。

当noLeader()被调用时,它会向Master发送消息RevokedLeadership时,Master会关闭。

private[spark] class ZooKeeperLeaderElectionAgent(val masterActor: ActorRef,
masterUrl: String, conf: SparkConf)
extends LeaderElectionAgent with LeaderLatchListener with Logging {
  val WORKING_DIR = conf.get("spark.deploy.zookeeper.dir", "/spark") + "/leader_election"
  // zk是通过CuratorFrameworkFactory创建的ZooKeeper实例
  private var zk: CuratorFramework = _
  // leaderLatch:Curator负责选出Leader。 private var leaderLatch: LeaderLatch = _
  private var status = LeadershipStatus.NOT_LEADER   override def preStart() {     logInfo("Starting ZooKeeper LeaderElection agent")
    zk = SparkCuratorUtil.newClient(conf)
    leaderLatch = new LeaderLatch(zk, WORKING_DIR)
    leaderLatch.addListener(this)     leaderLatch.start()
  }

在prestart中,启动了leaderLatch来处理选举ZK中的Leader。就如在上节分析的,基本的逻辑在isLeader和noLeader中。

  override def isLeader() {
synchronized {
// could have lost leadership by now.
//如今leadership可能已经被剥夺了。 。详情參见Curator的实现。
if (!leaderLatch.hasLeadership) {
return
} logInfo("We have gained leadership")
updateLeadershipStatus(true)
}
} override def notLeader() {
synchronized {
// 如今可能赋予leadership了。详情參见Curator的实现。
if (leaderLatch.hasLeadership) {
return
} logInfo("We have lost leadership")
updateLeadershipStatus(false)
}
}

updateLeadershipStatus的逻辑非常easy,就是向Master发送消息。

def updateLeadershipStatus(isLeader: Boolean) {
if (isLeader && status == LeadershipStatus.NOT_LEADER) {
status = LeadershipStatus.LEADER
masterActor ! ElectedLeader
} else if (!isLeader && status == LeadershipStatus.LEADER) {
status = LeadershipStatus.NOT_LEADER
masterActor ! RevokedLeadership
}
}

5. 设计理念

为了解决Standalone模式下的Master的SPOF,Spark採用了ZooKeeper提供的选举功能。Spark并没有採用ZooKeeper原生的Java API,而是採用了Curator,一个对ZooKeeper进行了封装的框架。採用了Curator后,Spark不用管理与ZooKeeper的连接,这些对于Spark来说都是透明的。

Spark只使用了100行代码,就实现了Master的HA。当然了,Spark是站在的巨人的肩膀上。谁又会去反复发明轮子呢?

请您支持:

假设你看到这里。相信这篇文章对您有所帮助。假设是的话,请为本文投一下票吧: 点击投票,多谢。假设您已经在投票页面,请点击以下的投一票吧!

BTW。即使您没有CSDN的帐号,能够使用第三方登录的,包含微博,QQ,Gmail。GitHub,百度。等。

Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源代码实现的更多相关文章

  1. Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现

    如果Spark的部署方式选择Standalone,一个采用Master/Slaves的典型架构,那么Master是有SPOF(单点故障,Single Point of Failure).Spark可以 ...

  2. Spark技术内幕:Master的故障恢复

    Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现  详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于 ...

  3. Spark技术内幕:Stage划分及提交源码分析

    http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...

  4. Spark技术内幕: Task向Executor提交的源码解析

    在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑, ...

  5. Spark技术内幕: Task向Executor提交的源代码解析

    在上文<Spark技术内幕:Stage划分及提交源代码分析>中,我们分析了Stage的生成和提交.可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓 ...

  6. linux -- 基于zookeeper搭建yarn的HA高可用集群

    linux -- 基于zookeeper搭建yarn的HA高可用集群 实现方式:配置yarn-site.xml配置文件 <configuration> <property> & ...

  7. Spark技术内幕:Client,Master和Worker 通信源代码解析

    Spark的Cluster Manager能够有几种部署模式: Standlone Mesos YARN EC2 Local 在向集群提交计算任务后,系统的运算模型就是Driver Program定义 ...

  8. Spark技术内幕:Client,Master和Worker 通信源码解析

    http://blog.csdn.net/anzhsoft/article/details/30802603 Spark的Cluster Manager可以有几种部署模式: Standlone Mes ...

  9. Spark技术内幕:Executor分配详解

    当用户应用new SparkContext后,集群就会为在Worker上分配executor,那么这个过程是什么呢?本文以Standalone的Cluster为例,详细的阐述这个过程.序列图如下: 1 ...

随机推荐

  1. mysql事件【定时器】

    一,借鉴[luo奔的蜗牛] 1.创建一张表 create table mytable ( id int auto_increment not null, name ) not null default ...

  2. B5. Concurrent JVM 锁优化

    [概述] 高效并发是从 JDK1.5 到 JDK 1.6 的一个重要改进,HotSpot 虚拟机开发团队在这个版本上花费了大量的精力去实现各种锁优化技术,如适应性自旋(Adaptive Spining ...

  3. 第3节 mapreduce高级:7、自定义outputformat实现输出到不同的文件夹下面

    2.1 需求 现在有一些订单的评论数据,需求,将订单的好评与差评进行区分开来,将最终的数据分开到不同的文件夹下面去,数据内容参见资料文件夹,其中数据第九个字段表示好评,中评,差评.0:好评,1:中评, ...

  4. 第1节 MapReduce入门:11、mapreduce程序的入门

    1.1.理解MapReduce思想 MapReduce思想在生活中处处可见.或多或少都曾接触过这种思想.MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景). ...

  5. hdfs深入:03、hdfs的架构以及副本机制和block块存储

    HDFS分布式文件系统设计目标 1.            硬件错误  由于集群很多时候由数量众多的廉价机组成,使得硬件错误成为常态 2.            数据流访问  所有应用以流的方式访问数 ...

  6. 用1天快速上手org-mode(windows系统)

    Table of Contents 1. 选择Emacs的理由--Org-mode 1.1. 现状(基于本人现有软件的使用) 1.2. 理念(够用才好) 1.3. 学习过程(少走弯路) 2. 快速安装 ...

  7. 样例GeoQuiz应用开发 第2章

    先介绍一下MVC,Model View Controller,是软件架构中最常见的一种框架. 简单来说就是通过 controller 的控制去操作 model 层的数据,并且返回给 view 层展示, ...

  8. 关于统一代码规范ResultBean<T>

    之前看了一篇文章,是java团长的一篇代码规范的文章,很有启发.统一返回格式确实给开发带来方便和美感, 有时候Colltroller返回String或者什么Map,list什么的,虽然都转成json返 ...

  9. assert.notStrictEqual()详解

    严格不相等测试,由不全等运算符确定(===). const assert = require('assert'); assert.notStrictEqual(1, 2); // OK assert. ...

  10. prop 和 attr 中一些羞羞的事情

    引言 前几天做一个迷你京东小项目的时候涉及到一个全选的小功能,一开始用的是 attr,但是效果完全不是自己想要的,当商品按钮点击过一次后,attr就无法对其状态进行更改,最后谷歌了一番发现需要用 pr ...