机器学习-Logistic function(Sigmoid function)
下面给出H函数

由这个函数生成的曲线称为Sigmoid曲线
先不从数学上说为什么这个模型中二元分类上比线性模型好,单纯从图形上看就可以得到直观的结论
首先Y值域在[0,1],其次图形中中间陡峭而两边平缓,符合二元分类的样本点特性
确定了模型,下面要做的是fit最优的θ,仍然是采用最大似然法,即找出对训练数据可能性最大的那个θ
前面对于线性回归问题,
符合高斯分布(连续回归问题往往符合高斯分布),最终我们由最大似然推导出最小二乘回归
但是对于二元分类,符合伯努利分布(the Bernoulli distribution, 又称两点分布,0-1分布),因为二元分类的输出一定是0或1,典型的伯努利实验
by the way,二项分布是n次独立的伯努利实验形成的概率分布,当n=1时,就是伯努利分布
同样,如果离散输出是多个值,就是符合多项分布
看看由最大似然可以推导出什么
首先给出伯努利分布

是否好理解,给定x;θ,y=1的概率等于h的值,看看图中,当然是h的值越大越可能为1,越小越可能为0
那么这个式子可以合并写成,比较tricky的写法,Y为0或1,总有一项为1
那么θ的似然函数定义为,θ的可能性取决于模型对训练集拟合的好坏 
同样为了数学计算方便,定义log likelihood,

很显然,对于伯努利分布,这里无法推导出最小二乘
下面要做的是找到θ使得ℓ(θ)最大,由于这里是找最大值而非最小值,所以使用梯度上升(gradient ascent),道理是一样的
首先计算梯度,计算过程参考原文

所以最终随机梯度上升rule写成,
这个梯度公式,奇迹般的和线性回归中的梯度公式表面上看是一样的,可以仔细比较一样的
之所以说表面上,是因为其中的
是不同的,这里是logitics函数。
Perceptron Learning Algorithm(感知机算法)
这里谈感知机,好像有些离题,但是你看下感知机的函数

单纯从直观图形的角度,似乎是逻辑函数的简化形式
逻辑函数是连续的在[0,1]区间上,而感知机直接非0则1,参考下图红线

同样使用梯度下降的感知机算法也是和上面相同的形式

同样不同的仅仅是h(x)
1960s,感知机被看作是大脑工作中独立神经元的粗糙的模型,由于简单,会用作后面介绍的学习算法的起点
虽然直观看上去感知机和之前看到的logistic回归或最小二乘回归很像,但是其实是非常不一样的算法
因为,对于感知机,很难赋予一种有意义的概率解释(probabilistic interpretations),或使用最大似然估计算法来推导感知机算法
而对于最小二乘或logistic都可以给出像高斯分布或伯努利分布的概率解释,并可以使用最大似然进行推导。
机器学习-Logistic function(Sigmoid function)的更多相关文章
- coursera机器学习-logistic回归,正则化
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- S性能 Sigmoid Function or Logistic Function
S性能 Sigmoid Function or Logistic Function octave码 x = -10:0.1:10; y = zeros(length(x), 1); for i = 1 ...
- logistic function 和 sigmoid function
简单说, 只要曲线是 “S”形的函数都是sigmoid function: 满足公式<1>的形式的函数都是logistic function. 两者的相同点是: 函数曲线都是“S”形. ...
- Sigmoid Function
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51734189 Sigmodi 函数是一 ...
- sigmoid function的直观解释
Sigmoid function也叫Logistic function, 在logistic regression中扮演将回归估计值h(x)从 [-inf, inf]映射到[0,1]的角色. 公式为: ...
- What are the advantages of ReLU over sigmoid function in deep neural network?
The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...
- Sigmoid function in NN
X = [ones(m, ) X]; temp = X * Theta1'; t = size(temp, ); temp = [ones(t, ) temp]; h = temp * Theta2' ...
- sigmoid function vs softmax function
DIFFERENCE BETWEEN SOFTMAX FUNCTION AND SIGMOID FUNCTION 二者主要的区别见于, softmax 用于多分类,sigmoid 则主要用于二分类: ...
- machine learning(10) -- classification:logistic regression cost function 和 使用 gradient descent to minimize cost function
logistic regression cost function(single example) 图像分布 logistic regression cost function(m examples) ...
- function,new function,Function,new Function 之间的区别
测试一: var fud01 = function() { var temp = 100; this.temp = 200; return temp + this.temp; } alert(typ ...
随机推荐
- win7-64bit安装comtypes的问题
Update 28/12/2014: Please download the latest comtypes 1.1.1 from https://pypi.python.org/pypi/comty ...
- WAMP的端口修改
wamp集成了开源的利器mysql+apache+php,真的是有越来越火的趋势了,可是有些人,安装php的集成开发环境WAMP的时候,出现端口被占用了,无法连接服务器的时候, 这时,如果要修改WAM ...
- Linux 对比 Windows 缺点
SELinux_百度百科 https://baike.baidu.com/item/SELinux/8865268?fr=aladdin 虽然Linux比起 Windows来说,它的可靠性,稳 ...
- winform 无法修改控件的location
dock and location 是因为设置了控件的Dock,导致无法修改
- maven配置篇
1,windows A)安装maven之前,确认已正确安装JDK B)下载maven http://maven.apache.org/download.html C)将压缩包解压到指定目录,E:\ap ...
- 什么叫强类型的DATASET
强类型DataSet,是指需要预先定义对应表的各个字段的属性和取值方式的数据集.对于所有这些属性都需要从DataSet, DataTable, DataRow继承,生成相应的用户自定义类.强类型的一个 ...
- hash与map的区别联系应用
一,hashtable原理: 哈希表又名散列表,其主要目的是用于解决数据的快速定位问题.考虑如下一个场景. 一列键值对数据,存储在一个table中,如何通过数据的关键字快速查找相应值呢?不要告诉我一个 ...
- 工作笔记——sqlserver引号的运用
一. sqlserver引号问题:因为要使用远程连接,所以sql语句要用单引号括起来 SELECT * FROM OPENQUERY ([192.168.***.***] ,'select * fro ...
- 【HDU 2167】 Pebbles
[题目链接] 点击打开链接 [算法] 状压DP 先搜出一行符合的情况,然后,f[i][j]表示第i行,状态为j,能够取得的最大值,DP即可 [代码] #include<bits/stdc++.h ...
- 使用Django.core.cache操作Memcached导致性能不稳定的分析过程
使用Django.core.cache操作Memcached导致性能不稳定的分析过程 最近测试一项目,用到了Nginx缓存服务,那可真是快啊!2Gb带宽都轻易耗尽. 不过Api接口无法简单使用Ngin ...
符合高斯分布(连续回归问题往往符合高斯分布),最终我们由最大似然推导出最小二乘回归