Codeforces 794F. Leha and security system 线段树
Bankopolis, the city you already know, finally got a new bank opened! Unfortunately, its security system is not yet working fine... Meanwhile hacker Leha arrived in Bankopolis and decided to test the system!
Bank has n cells for clients' money. A sequence from n numbers a1, a2, ..., an describes the amount of money each client has. Leha wants to make requests to the database of the bank, finding out the total amount of money on some subsegments of the sequence and changing values of the sequence on some subsegments. Using a bug in the system, Leha can requests two types of queries to the database:
- 1 l r x y denoting that Leha changes each digit x to digit y in each element of sequence ai, for which l ≤ i ≤ r is holds. For example, if we change in number 11984381 digit 8 to 4, we get 11944341. It's worth noting that Leha, in order to stay in the shadow, never changes digits in the database to 0, i.e. y ≠ 0.
- 2 l r denoting that Leha asks to calculate and print the sum of such elements of sequence ai, for which l ≤ i ≤ r holds.
As Leha is a white-hat hacker, he don't want to test this vulnerability on a real database. You are to write a similar database for Leha to test.
The first line of input contains two integers n and q (1 ≤ n ≤ 105, 1 ≤ q ≤ 105) denoting amount of cells in the bank and total amount of queries respectively.
The following line contains n integers a1, a2, ..., an (1 ≤ ai < 109) denoting the amount of money in each cell initially. These integers do not contain leading zeros.
Each of the following q lines has one of the formats:
- 1 l r x y (1 ≤ l ≤ r ≤ n, 0 ≤ x ≤ 9, 1 ≤ y ≤ 9), denoting Leha asks to change each digit x on digit y for each element ai of the sequence for which l ≤ i ≤ r holds;
- 2 l r (1 ≤ l ≤ r ≤ n), denoting you have to calculate and print the sum of elements ai for which l ≤ i ≤ r holds.
For each second type query print a single number denoting the required sum.
5 5
38 43 4 12 70
1 1 3 4 8
2 2 4
1 4 5 0 8
1 2 5 8 7
2 1 5
103
207
Let's look at the example testcase.
Initially the sequence is [38, 43, 4, 12, 70].
After the first change each digit equal to 4 becomes 8 for each element with index in interval [1; 3]. Thus, the new sequence is [38, 83, 8, 12, 70].
The answer for the first sum's query is the sum in the interval [2; 4], which equal 83 + 8 + 12 = 103, so the answer to this query is 103.
The sequence becomes [38, 83, 8, 12, 78] after the second change and [38, 73, 7, 12, 77] after the third.
The answer for the second sum's query is 38 + 73 + 7 + 12 + 77 = 207.
题意:
给你n个数
操作1:l r x y,区间[l,r]内所有数,数位上为x的都转化为y
操作2: l r 求区间和
题解:
线段树区间合并
建立10颗线段树,分别表示数字0~9所代表的值
将x转化为y也就是在将第x颗线段树区间[l,r]和减去,加到第y颗线段树上
这里的延时操作有点小技巧
每次push_down的时候保持每个点(0~9)指向唯一的另外一个点,这样再更新的时候才不会超时
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 5e5+, M = 1e3+, mod = 1e9+,inf = 2e9; LL sum[N][],H[N],a[N],sum2[];
int lazy[N][],vis[]; void push_down(int i,int ll,int rr) {
if(ll == rr) return ; for(int j = ; j < ; ++j) vis[j] = lazy[ls][j], sum2[j] = sum[ls][j];
for(int j = ; j < ; ++j) {
if(lazy[i][j] != j) {
for(int k = ; k < ; ++k) {
if(lazy[ls][k] == j) vis[k] = lazy[i][j];
}
sum2[lazy[i][j]] += sum[ls][j]; sum2[j] -= sum[ls][j];
}
}
for(int j = ; j < ; ++j)
lazy[ls][j] = vis[j], sum[ls][j] = sum2[j]; for(int j = ; j < ; ++j) vis[j] = lazy[rs][j], sum2[j] = sum[rs][j];
for(int j = ; j < ; ++j) {
if(lazy[i][j] != j) {
for(int k = ; k < ; ++k) {
if(lazy[rs][k] == j) vis[k] = lazy[i][j];
}sum2[lazy[i][j]] += sum[rs][j]; sum2[j] -= sum[rs][j];
}
}
for(int j = ; j < ; ++j)
lazy[rs][j] = vis[j], sum[rs][j] = sum2[j]; for(int j = ; j < ; ++j) lazy[i][j] = j;
} void push_up(int i,int ll,int rr) {
for(int j = ; j <= ; ++j) {
sum[i][j] = sum[ls][j] + sum[rs][j];
}
} void build(int i,int ll,int rr) { for(int j = ; j < ; ++j) lazy[i][j] = j; if(ll == rr) {
for(int j = ; j < ; ++j) sum[i][j] =;
LL tmp = a[ll];
for(int j = ; j <= ; ++j) {
sum[i][tmp%] += H[j-];
tmp/=;
if(tmp == ) break;
}
return ;
} build(ls,ll,mid); build(rs,mid+,rr);
push_up(i,ll,rr);
} void update(int i,int ll,int rr,int x,int y,int f,int s) { push_down(i,ll,rr);
if(ll == x && rr == y) {
for(int j = ; j <= ; ++j)
if(lazy[i][j] == f) {
lazy[i][j] = s;
sum[i][s] += sum[i][f];
sum[i][f] = ;
}
return ;
}
if(y <= mid) update(ls,ll,mid,x,y,f,s);
else if(x > mid) update(rs,mid+,rr,x,y,f,s);
else { update(ls,ll,mid,x,mid,f,s);
update(rs,mid+,rr,mid+,y,f,s); } push_up(i,ll,rr); } LL query(int i,int ll,int rr,int x,int y) {
push_down(i,ll,rr);
if(ll == x && rr == y) {
LL ret = ;
for(int j = ; j <= ; ++j) {
ret += 1LL*j*sum[i][j];
}
return ret;
}
if(y <= mid) return query(ls,ll,mid,x,y);
else if(x > mid) return query(rs,mid+,rr,x,y);
else {
return query(ls,ll,mid,x,mid)+query(rs,mid+,rr,mid+,y);
}
push_up(i,ll,rr); } int n,q; int main() { scanf("%d%d",&n,&q); for(int i = ; i <= n; ++i) {
scanf("%I64d",&a[i]);
} H[] = ;
for(int i = ; i <= ; ++i) H[i] = H[i-]*; build(,,n); for(int i = ; i <= q; ++i) {
int op,x,y,l,r;
scanf("%d",&op);
if(op == ) {
scanf("%d%d%d%d",&l,&r,&x,&y);
if(x == y) continue;
update(,,n,l,r,x,y);
}
else {
scanf("%d%d",&l,&r);
printf("%I64d\n",query(,,n,l,r));
}
} return ;
}
Codeforces 794F. Leha and security system 线段树的更多相关文章
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
- [Codeforces 280D]k-Maximum Subsequence Sum(线段树)
[Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
- Codeforces 444 C. DZY Loves Colors (线段树+剪枝)
题目链接:http://codeforces.com/contest/444/problem/C 给定一个长度为n的序列,初始时ai=i,vali=0(1≤i≤n).有两种操作: 将区间[L,R]的值 ...
- Codeforces Gym 100513F F. Ilya Muromets 线段树
F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...
- Codeforces 834D The Bakery【dp+线段树维护+lazy】
D. The Bakery time limit per test:2.5 seconds memory limit per test:256 megabytes input:standard inp ...
- codeforces 1017C - Cloud Computing 权值线段树 差分 贪心
https://codeforces.com/problemset/problem/1070/C 题意: 有很多活动,每个活动可以在天数为$[l,r]$时,提供$C$个价格为$P$的商品 现在从第一天 ...
- Codeforces 1045. A. Last chance(网络流 + 线段树优化建边)
题意 给你 \(n\) 个武器,\(m\) 个敌人,问你最多消灭多少个敌人,并输出方案. 总共有三种武器. SQL 火箭 - 能消灭给你集合中的一个敌人 \(\sum |S| \le 100000\) ...
- Codeforces 446C DZY Loves Fibonacci Numbers [线段树,数论]
洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即 ...
随机推荐
- 「LibreOJ β Round #3」绯色 IOI(抵达)
[题解] 我们可以发现叶子节点的关联点一定是它的父亲节点,那么我们dfs一遍就可以求出所有节点的关联点,或者判断出无解. 对于每个点i,它的关联点u的危险度肯定比它连接的其他点vi的危险度小,我们从u ...
- 【URAL 1486】Equal Squares(二维哈希+二分)
Description During a discussion of problems at the Petrozavodsk Training Camp, Vova and Sasha argued ...
- Root of AVL Tree
04-树5 Root of AVL Tree(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, the ...
- XV6陷入,中断和驱动程序
陷入,中断和驱动程序 运行进程时,cpu 一直处于一个大循环中:取指,更新 PC,执行,取指…….但有些情况下用户程序需要进入内核,而不是执行下一条用户指令.这些情况包括设备信号的发出.用户程序的非法 ...
- Git x SVN 当前工作流程
git-svn 当前工作流程 @ixenos 2018-12-27 21:37:47 前言:用惯了git,再用svn简直反人类,所以……还是用git-svn过渡一下 (由于远程还没有dev,直接坑爹地 ...
- ms sql server 大批量导入
BULK INSERT 文章:BULK INSERT如何将大量数据高效地导入SQL Server 可以首先在数据库建一个表Temp_tb,这个表作为导入数据的表,然后使用bulk insert导入,导 ...
- 运动员最佳匹配问题(km算法)
洛谷传送门 带权二分图最大权完美匹配. 裸的km算法. 注意开long long. #include <cstdio> #include <cstring> #include ...
- CF671D:Roads in Yusland
n<=300000个点的树,给m<=300000条带权路径(ui,vi,保证vi是ui的祖先)求覆盖整棵树每条边的最小权和. 好题好姿势!直观的看到可以树形DP,f[i]表示把点i包括它爸 ...
- msp430入门编程34
msp430中C语言的可移植--消除硬件差异
- php之memcache学习
php之memcache学习 简介: memcache是一个分布式高速缓存系统. 分布式是说可以部署在多台服务器上,实现集群效果: 高速是因为数据都是维护在内存中的: 特点和使用场景: 1.非持久化存 ...