Codeforces 794F. Leha and security system 线段树
Bankopolis, the city you already know, finally got a new bank opened! Unfortunately, its security system is not yet working fine... Meanwhile hacker Leha arrived in Bankopolis and decided to test the system!
Bank has n cells for clients' money. A sequence from n numbers a1, a2, ..., an describes the amount of money each client has. Leha wants to make requests to the database of the bank, finding out the total amount of money on some subsegments of the sequence and changing values of the sequence on some subsegments. Using a bug in the system, Leha can requests two types of queries to the database:
- 1 l r x y denoting that Leha changes each digit x to digit y in each element of sequence ai, for which l ≤ i ≤ r is holds. For example, if we change in number 11984381 digit 8 to 4, we get 11944341. It's worth noting that Leha, in order to stay in the shadow, never changes digits in the database to 0, i.e. y ≠ 0.
- 2 l r denoting that Leha asks to calculate and print the sum of such elements of sequence ai, for which l ≤ i ≤ r holds.
As Leha is a white-hat hacker, he don't want to test this vulnerability on a real database. You are to write a similar database for Leha to test.
The first line of input contains two integers n and q (1 ≤ n ≤ 105, 1 ≤ q ≤ 105) denoting amount of cells in the bank and total amount of queries respectively.
The following line contains n integers a1, a2, ..., an (1 ≤ ai < 109) denoting the amount of money in each cell initially. These integers do not contain leading zeros.
Each of the following q lines has one of the formats:
- 1 l r x y (1 ≤ l ≤ r ≤ n, 0 ≤ x ≤ 9, 1 ≤ y ≤ 9), denoting Leha asks to change each digit x on digit y for each element ai of the sequence for which l ≤ i ≤ r holds;
- 2 l r (1 ≤ l ≤ r ≤ n), denoting you have to calculate and print the sum of elements ai for which l ≤ i ≤ r holds.
For each second type query print a single number denoting the required sum.
5 5
38 43 4 12 70
1 1 3 4 8
2 2 4
1 4 5 0 8
1 2 5 8 7
2 1 5
103
207
Let's look at the example testcase.
Initially the sequence is [38, 43, 4, 12, 70].
After the first change each digit equal to 4 becomes 8 for each element with index in interval [1; 3]. Thus, the new sequence is [38, 83, 8, 12, 70].
The answer for the first sum's query is the sum in the interval [2; 4], which equal 83 + 8 + 12 = 103, so the answer to this query is 103.
The sequence becomes [38, 83, 8, 12, 78] after the second change and [38, 73, 7, 12, 77] after the third.
The answer for the second sum's query is 38 + 73 + 7 + 12 + 77 = 207.
题意:
给你n个数
操作1:l r x y,区间[l,r]内所有数,数位上为x的都转化为y
操作2: l r 求区间和
题解:
线段树区间合并
建立10颗线段树,分别表示数字0~9所代表的值
将x转化为y也就是在将第x颗线段树区间[l,r]和减去,加到第y颗线段树上
这里的延时操作有点小技巧
每次push_down的时候保持每个点(0~9)指向唯一的另外一个点,这样再更新的时候才不会超时
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 5e5+, M = 1e3+, mod = 1e9+,inf = 2e9; LL sum[N][],H[N],a[N],sum2[];
int lazy[N][],vis[]; void push_down(int i,int ll,int rr) {
if(ll == rr) return ; for(int j = ; j < ; ++j) vis[j] = lazy[ls][j], sum2[j] = sum[ls][j];
for(int j = ; j < ; ++j) {
if(lazy[i][j] != j) {
for(int k = ; k < ; ++k) {
if(lazy[ls][k] == j) vis[k] = lazy[i][j];
}
sum2[lazy[i][j]] += sum[ls][j]; sum2[j] -= sum[ls][j];
}
}
for(int j = ; j < ; ++j)
lazy[ls][j] = vis[j], sum[ls][j] = sum2[j]; for(int j = ; j < ; ++j) vis[j] = lazy[rs][j], sum2[j] = sum[rs][j];
for(int j = ; j < ; ++j) {
if(lazy[i][j] != j) {
for(int k = ; k < ; ++k) {
if(lazy[rs][k] == j) vis[k] = lazy[i][j];
}sum2[lazy[i][j]] += sum[rs][j]; sum2[j] -= sum[rs][j];
}
}
for(int j = ; j < ; ++j)
lazy[rs][j] = vis[j], sum[rs][j] = sum2[j]; for(int j = ; j < ; ++j) lazy[i][j] = j;
} void push_up(int i,int ll,int rr) {
for(int j = ; j <= ; ++j) {
sum[i][j] = sum[ls][j] + sum[rs][j];
}
} void build(int i,int ll,int rr) { for(int j = ; j < ; ++j) lazy[i][j] = j; if(ll == rr) {
for(int j = ; j < ; ++j) sum[i][j] =;
LL tmp = a[ll];
for(int j = ; j <= ; ++j) {
sum[i][tmp%] += H[j-];
tmp/=;
if(tmp == ) break;
}
return ;
} build(ls,ll,mid); build(rs,mid+,rr);
push_up(i,ll,rr);
} void update(int i,int ll,int rr,int x,int y,int f,int s) { push_down(i,ll,rr);
if(ll == x && rr == y) {
for(int j = ; j <= ; ++j)
if(lazy[i][j] == f) {
lazy[i][j] = s;
sum[i][s] += sum[i][f];
sum[i][f] = ;
}
return ;
}
if(y <= mid) update(ls,ll,mid,x,y,f,s);
else if(x > mid) update(rs,mid+,rr,x,y,f,s);
else { update(ls,ll,mid,x,mid,f,s);
update(rs,mid+,rr,mid+,y,f,s); } push_up(i,ll,rr); } LL query(int i,int ll,int rr,int x,int y) {
push_down(i,ll,rr);
if(ll == x && rr == y) {
LL ret = ;
for(int j = ; j <= ; ++j) {
ret += 1LL*j*sum[i][j];
}
return ret;
}
if(y <= mid) return query(ls,ll,mid,x,y);
else if(x > mid) return query(rs,mid+,rr,x,y);
else {
return query(ls,ll,mid,x,mid)+query(rs,mid+,rr,mid+,y);
}
push_up(i,ll,rr); } int n,q; int main() { scanf("%d%d",&n,&q); for(int i = ; i <= n; ++i) {
scanf("%I64d",&a[i]);
} H[] = ;
for(int i = ; i <= ; ++i) H[i] = H[i-]*; build(,,n); for(int i = ; i <= q; ++i) {
int op,x,y,l,r;
scanf("%d",&op);
if(op == ) {
scanf("%d%d%d%d",&l,&r,&x,&y);
if(x == y) continue;
update(,,n,l,r,x,y);
}
else {
scanf("%d%d",&l,&r);
printf("%I64d\n",query(,,n,l,r));
}
} return ;
}
Codeforces 794F. Leha and security system 线段树的更多相关文章
- [Codeforces 266E]More Queries to Array...(线段树+二项式定理)
[Codeforces 266E]More Queries to Array...(线段树+二项式定理) 题面 维护一个长度为\(n\)的序列\(a\),\(m\)个操作 区间赋值为\(x\) 查询\ ...
- [Codeforces 280D]k-Maximum Subsequence Sum(线段树)
[Codeforces 280D]k-Maximum Subsequence Sum(线段树) 题面 给出一个序列,序列里面的数有正有负,有两种操作 1.单点修改 2.区间查询,在区间中选出至多k个不 ...
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
- Codeforces 444 C. DZY Loves Colors (线段树+剪枝)
题目链接:http://codeforces.com/contest/444/problem/C 给定一个长度为n的序列,初始时ai=i,vali=0(1≤i≤n).有两种操作: 将区间[L,R]的值 ...
- Codeforces Gym 100513F F. Ilya Muromets 线段树
F. Ilya Muromets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100513/probl ...
- Codeforces 834D The Bakery【dp+线段树维护+lazy】
D. The Bakery time limit per test:2.5 seconds memory limit per test:256 megabytes input:standard inp ...
- codeforces 1017C - Cloud Computing 权值线段树 差分 贪心
https://codeforces.com/problemset/problem/1070/C 题意: 有很多活动,每个活动可以在天数为$[l,r]$时,提供$C$个价格为$P$的商品 现在从第一天 ...
- Codeforces 1045. A. Last chance(网络流 + 线段树优化建边)
题意 给你 \(n\) 个武器,\(m\) 个敌人,问你最多消灭多少个敌人,并输出方案. 总共有三种武器. SQL 火箭 - 能消灭给你集合中的一个敌人 \(\sum |S| \le 100000\) ...
- Codeforces 446C DZY Loves Fibonacci Numbers [线段树,数论]
洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即 ...
随机推荐
- Django框架基础知识03-模板变量及模板过滤器
模板变量及模板过滤器. 1.模板路径的查找 -查找顺序 1.尝试,在app目录下存放模板. -两种方案 1.app项目文件夹下存放. 2.templates文件夹下分类存放. 首先查找项目settin ...
- springMVC model传对象数组 jq 获取
这个问题网上没有什么解答,有两种可能性: 一.我使用的这种方法实在太蠢了正常人都不会去这个搞: 二.我太蠢了.... 以下解决方案 //后台代码如下 public String plant(Model ...
- C# Updating
闪开,这篇博文仅作笔记C#处理. 用来记录在学习/使用C#的过程中的Point,持续更新或成文后大幅删减 1,定义类,当声明类的对象后,类中的方法并不会被执行,构造函数会在声明类的对象时,被触发,没有 ...
- linux中的vi命令
linux的重要的几个命令如下: ①,光标的操作 1,gg,G,nG,:n gg移到文档的开头一行,G移动到最后一行,nG移动到第n行,到指定的行. 2,H,M,L 光标分别移动到这个界面的最上边,中 ...
- WebStorm下载安装
下载地址:https://www.jetbrains.com/webstorm/ 注册码: http://idea.codebeta.cn
- CD(01背包)
You have a long drive by car ahead. You have a tape recorder, but unfortunately your best music is o ...
- POJ-1861,Network,最小生成树水题,,注意题面输出有问题,不必理会~~
Network Time Limit: 1000MS Memory Limit: 30000K Special Judge http://poj.org/problem?id=1 ...
- Gym - 100548C The Problem Needs 3D Arrays (最大密度子图)
TK在大多数 Unix平台.Windows平台和Macintosh系统都是预装好的,TKinter 模块是 Tk GUI 套件的标准Python接口.可实现Python的GUI编程. Tkinter模 ...
- [luoguP2016] 战略游戏(DP)
传送门 f[i][0]表示不选当前节点,当前节点的所有儿子节点都选f[i][1]表示选当前节点,儿子节点可选可不选 #include <cstdio> #include <cstri ...
- POJ 1273 Drainage Ditches【图论,网络流】
就是普通的网络流问题,想试试新学的dinic算法,这个算法暑假就开始看国家集训队论文了,之前一直都只用没效率的EK算法,真正学会这个算法还是开学后白书上的描述:dinic算法就是不断用BFS构建层次图 ...