#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn= ; struct _point
{
double x, y;
_point (double _x= , double _y= )
{
x= _x;
y= _y;
}
/*friend: 修饰词:友元函数*/
friend inline _point operator + (const _point &a, const _point &b)
{
return _point(a.x+ b.x, a.y+ b.y );
}
friend inline _point operator - (const _point &a, const _point &b)
{
return _point(a.x- b.x, a.y- b.y );
}
friend inline double operator * (const _point &a, const _point &b)
{
/*叉乘,求叉积*/
/*x1y2- x2y1*/
return (a.x* b.y)- (b.x* a.y);
}
};
_point point[maxn];
_point In_Bag[maxn]; double getDis(_point a,_point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
bool cmpx (const _point &a,const _point &b)
{
/*极角按逆时针排序(顺时针的点排在前面便是逆时针排序)*/
/*叉积等于0,两向量平行*/
double k= (a- point[])* (b- point[]);
return == k? (getDis(a, point[])- getDis(b, point[])<= ): k< ;
} int cnt; //凸包集里点的个数;
void Graham_Scan(int n)
{
cnt= -;
In_Bag[++ cnt]= point[];
for(int i= ; i< n; i ++)
{
while(cnt&& (point[i]- In_Bag[cnt])* (In_Bag[cnt]-In_Bag[cnt- ])< )
{
/*当In_Bag中至少有基点和另一点时(cnt>= 1)*/
/*逆时针扫描时,如果向量{pn- 1, pn}与{pn, pn+ 1}的叉积为负,则将上一点删除*/
/*顺时针扫描判断是否为正*/
-- cnt;
}
In_Bag[++ cnt]= point[i];
}
} int main()
{
int n;
double xx, yy;
while (~ scanf("%d", &n))
{
for (int i= ; i< n; i ++)
{
scanf("%lf %lf", &xx, &yy);
if (i)
{
if (yy< point[].y|| (yy== point[].y&& xx< point[].x))
{
double tmp= yy;
yy= point[].y;
point[].y= tmp;
tmp= xx;
xx= point[].x;
point[].x= tmp;
}
}
point[i].x= xx;
point[i].y= yy;
}
sort(point+ , point+ n, cmpx);
Graham_Scan(n); /*求凸包周长*/
double Dis= ;
// cout << "********************" << endl;
// for (int i= 0; i<= cnt; i ++)
// {
// cout << In_Bag[i].x << " " << In_Bag[i].y << endl;
// }
for (int i= ; i<= cnt; i ++)
{
Dis+= getDis(In_Bag[i], In_Bag[(i+ )% (cnt+ )]);
}
printf("%.2f\n", Dis);
}
return ;
}

简化后模板

凸包

点集Q的凸包(convex hull)是指一个最小凸多边形,满足Q中的点或者在多边形边上或者在其内。右图中由红色线段表示的多边形就是点集Q={p0,p1,...p12}的凸包。

一组平面上的点,求一个包含所有点的最小的凸多边形,这就是凸包问题了。这可以形象地想成这样:在地上放置一些不可移动的木桩,用一根绳子把他们尽量紧地圈起来,并且为凸边形,这就是凸包了。

数学定义:设S为欧几里得空间Rn的任意子集。包含S的最小凸集称为S的凸包,记作conv(S)。

【百度百科】https://baike.baidu.com/item/%E5%87%B8%E5%8C%85/179150?fr=aladdin

以下内容基本照搬。

凸包最常用的凸包算法是Graham扫描法Jarvis步进法

①Graham's Scan法

这个算法是由数学大师葛立恒(Graham)发明的。

⒈ 在所有点中选取y坐标最小的一点H,当作基点。如果存在多个点的y坐标都为最小值,则选取x坐标最小的一点。坐标相同的点应排除。

2.然后按照其它各点p和基点构成的向量<H,p>;与x轴的夹角进行排序,夹角由大至小进行顺时针扫描,反之则进行逆时针扫描。实现中无需求得夹角,只需根据余弦定理求出向量夹角的余弦值即可。

以下图为例,基点为H,根据夹角由小至大排序后依次为H,K,C,D,L,F,G,E,I,B,A,J。下面进行逆时针扫描。

3.线段<H,K>;一定在凸包上,接着加入C。假设线段<K,C>;也在凸包上,因为就H,K,C三点而言,它们的凸包就是由此三点所组成。但是接下来加入D时会发现,线段<K,D>;才会在凸包上,所以将线段<K,C>;排除,C点不可能是凸包。即当加入一点时,必须考虑到前面的线段是否在凸包上。从基点开始,凸包上每条相临的线段的旋转方向应该一致,并与扫描的方向相反。如果发现新加的点使得新线段与上线段的旋转方向发生变化,则可判定上一点必然不在凸包上。实现时可用向量叉积进行判断,设新加入的点为Pn+1,上一点为Pn,再上一点为Pn-1 。顺时针扫描时,如果向量{Pn-1 ,Pn}与{Pn,Pn+1}的叉积为正(逆时针扫描判断是否为负),则将上一点删除。删除过程需要回溯,将之前所有叉积符号相反的点都删除,然后将新点加入凸包。

4.在上图中,加入K点时,由于线段<H,C>要旋转到<H,K>的角度,为顺时针旋转,所以C点不在凸包上,应该删除,保留K点。接着加入D点,由于线段<K,D>要旋转到<H,K>的角度,为逆时针旋转,故D点保留。按照上述步骤进行扫描,直到点集中所有的点都遍历完成,即得到凸包。

向量的叉积

向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。

两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。

向量积|c|= |a×b|= |a||b|sin<ab>;c的方向遵守右手定则。c是垂直ab所在平面,且以|b|·sinθ为高、|a|为底的平行四边形的面积。

c = a×b=(x1y2- x2y1);

【图源维基百科】

维基百科中向量积解释:https://en.wikipedia.org/wiki/Cross_product

下面放一个例子吧;

【洛谷】P2742 【模板】二维凸包 / [USACO5.1]圈奶牛Fencing the Cows

题目描述

农夫约翰想要建造一个围栏用来围住他的奶牛,可是他资金匮乏。他建造的围栏必须包括他的奶牛喜欢吃草的所有地点。对于给出的这些地点的坐标,计算最短的能够围住这些点的围栏的长度。

输入格式:

输入数据的第一行包括一个整数 N。N(0 <= N <= 10,000)表示农夫约翰想要围住的放牧点的数目。接下来 N 行,每行由两个实数组成,Xi 和 Yi,对应平面上的放牧点坐标(-1,000,000 <= Xi,Yi <= 1,000,000)。数字用小数表示。

输出格式:

输出必须包括一个实数,表示必须的围栏的长度。答案保留两位小数。

这是一道二维凸包模板题。我按上面的步骤一点点拆分一下。

首先两个pair数组,分别存放所有的点和位于凸包上的点。

const int maxn = ;
typedef pair<double, double> _pair; _pair point[maxn];
_pair In_Bag[maxn];

之所以用pair是因为二维坐标刚好两个点,有便宜不占嘿嘿嘿。

然后一些基本的计算几何公式;

计算两点间距离。

double Get_Dis (_pair point1, _pair point2)
{
//计算两点间距离
return sqrt(((point1.first- point2.first)* (point1.first- point2.first) )
+ ((point1.second- point2.second)* (point1.second- point2.second) ) );
}

计算叉积。

double Get_axb (_pair a_point1, _pair a_point2, _pair b_point1, _pair b_point2)
{
//计算两条向量的叉积
//向量a= a_point1 --> a_point2= a_point2- a_point1;
//向量b= b_point1 --> b_point2= b_point2- b_point1;
//叉积axb= (a.x* b.y)- (b.x* a.y);
//a.x= a_point2.x- a_point1.x; a.y= a_point2.y- a_point1.y;
return (((a_point2.first- a_point1.first)* (b_point2.second- b_point1.second) )
- ((b_point2.first- b_point1.first)* (a_point2.second- a_point1.second) ) );
}

计算向量a和x轴所成角的余弦值。

double Get_Cos (_pair point1, _pair point2)
{
//计算向量a(point1-->point2) 的余弦值;
point2.first-= point1.first; //把point1看作坐标原点(0, 0);
point2.second-= point1.second; //则point2的坐标为(P2.x- P1.x, P2.y- P1.y);
point1.first= ;
point1.second= ;
_pair point3; //在X轴上找一点P3,做直角三角形;
point3.first= point2.first; //P3.x= P2.x;
point3.second= ; //P3.y= P1.y= 0;
double Dis_P1_P2= Get_Dis(point1, point2); //计算直角三角形的斜边长,即P1P2之间的距离;
return point3.first/ Dis_P1_P2; //邻边/ 斜边;
}

确定了基点后,围绕基点对其余点排序(按余弦值),判断函数cmp。

bool cmpx_1 (_pair a, _pair b)
{
//小于运算(按与基点P0所成向量的余弦值大小,余弦值越大越优先;cosx在[0,Pi]内从1到-1,减函数;
//排序后,按逆时针方向遍历点集;
_pair tmp = point[]; //基点;
double Cos_a = Get_Cos(tmp, a); //求出a,b的余弦值;
double Cos_b = Get_Cos(tmp, b);
return Cos_a- Cos_b> ; //余弦值越大越优先(越大逆时针遍历越靠前);
}

主函数中,在输入时先确定基点point[0],然后对其余点按逆时针顺序排序。

for (int i = ; i < n; i ++)
{
cin >> x >> y;
if (i )
{
if (y< point[].second|| (y== point[].second&& x< point[].first) )
{
double tmp= y;
y= point[].second;
point[].second= tmp;
tmp= x;
x= point[].first;
point[].first= tmp;
}
}
point[i].first= x;
point[i].second= y;
}
sort(point+ , point+ n, cmpx_1);

对排序后的点集,判断是否加入In_Bag[]。

int cnt= -;                          //cnt -->In_Bag[]中最后一位元素的数组下标;
In_Bag[++ cnt]= point[];
for (int i = ; i < n; i ++) //从point[1]开始;
{
while (cnt&& Get_axb(In_Bag[cnt- ], In_Bag[cnt], In_Bag[cnt], point[i])< )
{
//当In_Bag中至少有基点和另一点时(cnt>= 1时);
//逆时针扫描时,如果向量{Pn-1, Pn}与{Pn, Pn+1}的叉积为负,则将上一点删除;
//(顺时针扫描判断是否为正)
-- cnt;
}
In_Bag[++ cnt]= point[i];
}

最后把所有点首尾相连,算出距离和即可。

double Dis = ;
for (int i= ; i<= cnt; i ++)
{
Dis+= Get_Dis(In_Bag[i], In_Bag[(i+ )% (cnt+ )]);
}
printf("%.2f\n", Dis);

谢谢各位能看到最后嘿嘿。

完整的代码在这里。

https://www.cnblogs.com/Amaris-diana/p/10519865.html

【计算几何】二维凸包——Graham's Scan法的更多相关文章

  1. 计算几何 二维凸包问题 Andrew算法

    凸包:把给定点包围在内部的.面积最小的凸多边形. Andrew算法是Graham算法的变种,速度更快稳定性也更好. 首先把全部点排序.依照第一keywordx第二keywordy从小到大排序,删除反复 ...

  2. 二维凸包 Graham扫描算法

    题目链接: http://poj.org/problem?id=1113 求下列点的凸包 求得凸包如下: Graham扫描算法: 找出最左下的点,设为一号点,将其它点对一号点连线,按照与x轴的夹角大小 ...

  3. 使用Graham扫描法求二维凸包的一个程序

    #include <iostream> #include <cstring> #include <cstdlib> #include <cmath> # ...

  4. Luogu P2742 模板-二维凸包

    Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...

  5. luogu P2742 【模板】二维凸包 / [USACO5.1]圈奶牛Fencing the Cows

    题解: 二维凸包裸题 按照x坐标为第一关键字,y坐标为第二关键字排序 然后相邻判断叉积用单调队列搞过去 正反都做一次就好了 代码: #include <bits/stdc++.h> usi ...

  6. 【洛谷 P2742】【模板】二维凸包

    题目链接 二维凸包板子..有时间会补总结的. #include <cstdio> #include <cmath> #include <algorithm> usi ...

  7. poj 2079 Triangle (二维凸包旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000KB   64bit IO Format: %I64d & %I64u Submit Stat ...

  8. poj 2187 Beauty Contest(二维凸包旋转卡壳)

    D - Beauty Contest Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  9. UVA 10652 Board Wrapping(二维凸包)

    传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...

随机推荐

  1. 【bzoj2464】中山市选[2009]小明的游戏

    直接转换成最短路 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstr ...

  2. go5--数组

    package main /* 数组Array 定义数组的格式:var <varName> [n]<type>,n>=0 数组长度也是类型的一部分,因此具有不同长度的数组 ...

  3. go3--常量和类型转换

    /* Go中不存在隐式转换,所有类型转换必须显式声明 转换只能发生在两种相互兼容的类型之间 类型转换的格式: <ValueA> [:]= <TypeOfValueA>(< ...

  4. 中国剩余定理模板&俄罗斯乘法

    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){ if(!b){d=a;x=1LL;y=0LL;} else {ex_gcd(b,a%b,d, ...

  5. oracle数据库的导入 导出实例

    oracle数据库的导入 导出实例 分类: DataBase2011-09-07 23:25 377人阅读 评论(0) 收藏 举报 数据库oraclefileusercmdservice 我要从另外一 ...

  6. USACO Section 1.1PROB Your Ride Is Here

    题目传送门 不能提交哦   http://www.nocow.cn/index.php/Translate:USACO/ride /* ID: jusonal1 PROG: ride LANG: C+ ...

  7. 扩展AutoCompleteTextView让其默认显示一组列表。setThreshold

    很多时候, 在做自动下拉框时,默认点上去时需要显示一组默认的下拉数据.但是默认的AutoCompleteTextView是实现不了的, 因为setThreshold方法最小值是1,就算你设的值为0,也 ...

  8. 【bug】【userAgent】极速模式与非极速模式存在差异

    UC浏览器 Android 极速模式 UC浏览器 Android 非极速模式

  9. Linux 上安装 Node.js

    Linux 上安装 Node.js 直接使用已编译好的包(在个人阿里云服务器47.100.6.106上安装) Node 官网已经把 linux 下载版本更改为已编译好的版本了,我们可以直接下载解压后使 ...

  10. 【Linux】小米路由开启SSH访问权限

    一.验证小米路由ROM是否为开发版 1.  登录小米路由Web管理页面,检查ROM版本是否为开发版(若为开发版直接跳至第二步,若为稳定版继续本步骤). 2. 进入小米路由器官网(http://www1 ...