【bzoj3669】魔法森林
Solution
愉悦智力康复ing
这题的话有两个比较关键的地方
首先是答案肯定是原图的某个生成树上的一条路径,那么我们考虑怎么来找这个生成树,因为关键值有两个,所以我们这里可以采取这样的一个方式:先对其中一个关键值排序
我们先将所有的边按照\(a\)值排序,然后按顺序加边,如果说当前这条边连接的两个点已经连通了,那么我们要考虑删掉一条边或者干脆不加这条边
这里我们可以用一个贪心的思想,删边的话肯定是删当前的边中\(b\)最大的那个(如果要加的那条边的\(b\)是最大的那么我们就不加这条边),如果说我们加了这条边并且\(1\)和\(n\)连通了,那么可以用当前最大的\(b\)+当前的\(a\)来更新答案(因为\(a\)是升序排列的,所以当前的\(a\)一定是最大的)
接着是第二部分,如何维护\(b\)的最大值?
又要删边又要加边的维护的又是链的数据,那当然是LCT咯qwq,但是因为这个地方我们是要维护边权,所以我们将每一条边变成一个点,然后其他的就全部都是常规操作了ovo
好像是比较套路的一题qwq
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mp make_pair
#define Pr pair<int,int>
using namespace std;
const int N=50010,M=100010,L=N+M;
const int inf=2147483647;
struct Rec{
int a,b,x,y,id;
friend bool operator <(Rec x,Rec y){return x.a<y.a;}
}a[M];
int n,m,ans;
namespace Lct{/*{{{*/
int ch[L][2],fa[L],mx[L],loc[L],rev[L];
int b[L];
int tot;
bool isroot(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
int which(int x){return ch[fa[x]][1]==x;}
void reverse(int x){
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
}
void pd(int x){
if (rev[x]){
if (ch[x][0]) reverse(ch[x][0]);
if (ch[x][1]) reverse(ch[x][1]);
rev[x]=0;
}
}
void pushdown(int x){
if (!isroot(x)) pushdown(fa[x]);
pd(x);
}
void pushup(int x){
mx[x]=b[x]; loc[x]=x;
if (ch[x][0]){
if (mx[ch[x][0]]>mx[x])
mx[x]=mx[ch[x][0]],loc[x]=loc[ch[x][0]];
}
if (ch[x][1]){
if (mx[ch[x][1]]>mx[x])
mx[x]=mx[ch[x][1]],loc[x]=loc[ch[x][1]];
}
}
void rotate(int x){
int dir=which(x),f=fa[x];
if (!isroot(f)) ch[fa[f]][which(f)]=x;
if (ch[x][dir^1]) fa[ch[x][dir^1]]=f;
fa[x]=fa[f];
ch[f][dir]=ch[x][dir^1];
ch[x][dir^1]=f; fa[f]=x;
pushup(f);
pushup(x);
}
void splay(int x){
pushdown(x);
for (int f=fa[x];!isroot(x);f=fa[x]){
if (!isroot(f))
rotate(which(f)==which(x)?f:x);
rotate(x);
}
}
void access(int x){
for (int last=0;x;last=x,x=fa[x]){
splay(x);
ch[x][1]=last;
pushup(x);
}
}
void make_rt(int x){
access(x);
splay(x);
reverse(x);
}
bool connected(int x,int y){
if (x==y) return true;
make_rt(x);
access(y);
splay(y);
return fa[x];
}
bool check(int x,int y){
make_rt(x);
access(y);
splay(y);
return ch[y][0]==x;
}
void cut(int x,int y){
//printf("Cut %d %d\n",x,y);
make_rt(x);
access(y);
splay(y);
fa[x]=0;
ch[y][0]=0;
pushup(y);
}
Pr query(int x,int y){
make_rt(x);
access(y);
splay(y);
return mp(mx[y],loc[y]);
}
void link(int x,int y){
//printf("Link %d %d\n",x,y);
make_rt(y);
fa[y]=x;
pushup(x);
}
void Link(int x,int y,int bian,int vala){
int tmp;
if (x==y) return;
if (connected(x,y)){
tmp=query(x,y).second;
if (b[bian]<b[tmp]){
cut(a[tmp-n].x,tmp);
cut(a[tmp-n].y,tmp);
link(x,bian);
link(y,bian);
}
}
else{
link(x,bian);
link(y,bian);
}
if (connected(1,n)){
tmp=query(1,n).first;
ans=min(ans,tmp+vala);
}
}
}/*}}}*/
void build(){
sort(a+1,a+1+m);
for (int i=1;i<=m;++i){
a[i].id=i+n;
Lct::b[a[i].id]=a[i].b;
Lct::pushup(a[i].id);
}
}
void solve(){
ans=inf;
int tmp=0;
for (int i=1;i<=m;++i){
Lct::Link(a[i].x,a[i].y,a[i].id,a[i].a);
//printf("%d\n",ans);
}
if (ans!=inf) printf("%d\n",ans);
else printf("-1\n");
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for (int i=1;i<=m;++i){
scanf("%d%d%d%d\n",&a[i].x,&a[i].y,&a[i].a,&a[i].b);
}
build();
//for (int i=1;i<=m;++i) printf("%d %d %d %d\n",a[i].x,a[i].y,a[i].a,a[i].b);
solve();
}
【bzoj3669】魔法森林的更多相关文章
- BZOJ-3669 魔法森林 Link-Cut-Tree
意识到背模版的重要性了,记住了原理和操作,然后手打模版残了..颓我时间...... 3669: [Noi2014]魔法森林 Time Limit: 30 Sec Memory Limit: 512 M ...
- [BZOJ3669]魔法森林
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
- 洛谷2387 BZOJ3669魔法森林题解
题目链接 BZ链接 这道题被很多人用spfa水了过去,表示很... 其实spfa很好卡,这组数据可以卡掉大多数spfa 链接:密码:rjvk 这里讲一下LCT的做法 我们按照a将边排序,然后依次添加 ...
- 【BZOJ3669】【Noi2014】魔法森林(Link-Cut Tree)
[BZOJ3669][Noi2014]魔法森林(Link-Cut Tree) 题面 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n ...
- bzoj3669: [Noi2014]魔法森林 lct版
先上题目 bzoj3669: [Noi2014]魔法森林 这道题首先每一条边都有一个a,b 我们按a从小到大排序 每次将一条路劲入队 当然这道题权在边上 所以我们将边化为点去连接他的两个端点 当然某两 ...
- [bzoj3669][Noi2014]魔法森林_LCT_并查集
魔法森林 bzoj-3669 Noi-2014 题目大意:说不明白题意系列++……题目链接 注释:略. 想法:如果只有1个参量的话spfa.dij什么的都上来了. 两个参量的话我们考虑,想将所有的边按 ...
- 【BZOJ3669】[Noi2014]魔法森林 LCT
终于不是裸的LCT了...然而一开始一眼看上去这是kruskal..不对,题目要求1->n的路径上的每个点的两个最大权值和最小,这样便可以用LCT来维护一个最小生成路(瞎编的...),先以a为关 ...
- BZOJ3669[Noi2014]魔法森林——kruskal+LCT
题目描述 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住 ...
- 【NOI2014】【BZOJ3669】【UOJ#3】魔法森林
我学会lct辣 原题: 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为 1…n1…n,边标号为1…m1…m.初始时小E ...
- BZOJ3669:[NOI2014]魔法森林——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=3669 https://www.luogu.org/problemnew/show/P2387 为了得 ...
随机推荐
- Appium+python的单元测试框架unittest(2)——fixtures(转)
(原文:https://www.cnblogs.com/fancy0158/p/10046333.html) unittest提供的Fixtures用以在测试执行前和执行后进行必要的准备和清理工作,可 ...
- python爬虫之requests库
在python爬虫中,要想获取url的原网页,就要用到众所周知的强大好用的requests库,在2018年python文档年度总结中,requests库使用率排行第一,接下来就开始简单的使用reque ...
- dalao自动报表邮件2.0
经过昨天的修改优化后,dalao收到了不是“木马”的邮件,欣慰地点了点头,“不错,不错,这几张表设计的简洁明了,看着有货!不过呀,,,这些表的数据太多了一点,十几天的数据一大溜,能不能再简洁一点,做一 ...
- Pairs Forming LCM LightOJ - 1236 素因子分解
Find the result of the following code: long long pairsFormLCM( int n ) { long long res = 0; fo ...
- spark的数据结构 RDD——DataFrame——DataSet区别
转载自:http://blog.csdn.net/wo334499/article/details/51689549 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接 ...
- 英文Datasheet没那么难读
话说学好数理化,走遍天下都不怕.可是在这个所谓的全球化时代,真要走遍天下的话,数理化还真未必比得上一门外语.作为技术人员,可以看到的是目前多数前沿的产品和技术多来自发达的欧美等国家,而英语目前才是真正 ...
- 软件工程-东北师大站-第七次作业(PSP)
1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 4.本周PSP饼状图
- python knn自我实践
#得到分类数据和测试数据 import pymysql import struct from numpy import * a=['']*20 #存图像 分类数据 b=[[0]*76800]*20#存 ...
- IIS 7.0 的 ASP.NET 应用程序生命周期概述
文章:IIS 7.0 的 ASP.NET 应用程序生命周期概述 地址:https://msdn.microsoft.com/zh-cn/library/bb470252(v=vs.100).aspx ...
- lintcode-480-二叉树的所有路径
480-二叉树的所有路径 给一棵二叉树,找出从根节点到叶子节点的所有路径. 您在真实的面试中是否遇到过这个题? Yes 样例 给出下面这棵二叉树: 所有根到叶子的路径为: [ "1-> ...