题目分析:1.无向图欧拉回路是否连通2.所有点的度为偶数。并查集+degree

这题题目保证了是联通的  所以就不用判断是否联通了

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(a, n) for(int i=a; i<=n; i++)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int n;
int drgee[maxn], f[maxn], line[maxn][maxn];
//int find(int x)
//{
// return f[x]==x?x:(f[x]=find(f[x]));
//} void print(int u)
{
for(int i=; i<=; i++)
if(line[u][i])
{
line[u][i]--;
line[i][u]--;
print(i);
printf("%d %d\n", i, u);
} } int main()
{
int T, cnt, kase = ;
scanf("%d", &T);
while(T--)
{
cnt = ;
mem(drgee, );
mem(line, );
// rap(1, maxn-1) f[i] = i;
scanf("%d", &n);
rap(, n)
{
int u, v;
scanf("%d%d", &u, &v);
drgee[u]++;
drgee[v]++;
line[u][v]++;
line[v][u]++;
// f[u] = v;
}
printf("Case #%d\n", ++kase);
// rap(1, n)
// {
// if(f[i] == i)
// {
// cnt++;
// break;
// }
// } // if(cnt > 1)
// {
// cout<< "some beads may be lost" <<endl;
// if(T) printf("\n");
// continue;
// }
cnt = ;
rap(, )
{
if(drgee[i] & )
{
cnt++;
break;
}
}
if(cnt > )
{
printf("some beads may be lost\n");
if(T) printf("\n");
continue;
}
rap(, )
{
print(i);
} if(T) printf("\n");
} return ;
}

以下解释 转载至 https://www.cnblogs.com/scau20110726/archive/2012/11/09/2762371.html  文章 和 评论部分

如果写成这样是错的

void euler(int u)
{
int v;
for(v=1; v<=50; v++)
if(g[u][v])
{
g[u][v]--;
g[v][u]--;
       printf("%d %d\n",u,v);

        euler(v);
    //这样相当于顺序输出
}
}

在输入的时候使会有重边的,也就是g[i][j]的值不一定只是为1

然后从一个点出发,找到和他相连的点,然后删除这条无向边,所以是  g[u][v]--;   g[v][u]--;  然后就去dfs下一个点v,最后在递归返回的时候才输出路径,也就是逆序输出,为什么要逆序输出了

因为和当前点i相连的点可能不止一个

例如当前点是1,上一条边是(3,1) . 而和1相连的点有2,7,11,能分成3个方向

往2的方向有:(1,2) (2,4)

往7的方向有:(1,7)(7,5)(5,6)

往11的方向有:(1,11)(11,12)(12,13)

如果顺序输出将会是

3 1

1 2

2 4

1 7

7 5

5 6

1 11

11 12

12 13

当找到起点之后,将起点压入栈中,然后访问与顶点相连的一个顶点,将该顶点压入栈中,同时删除这条边,然后继续DFS寻找顶点,并同样压栈、删除,最后,直到走到一个没有任何边与它相连的顶点(可能是起始点,也可能不是),便开始进行回溯,(回溯的同时进行弹栈,弹栈的结果也就是欧拉回路的逆序输出结果),回溯的过程就是寻找相连路径的过程,如果回溯的过程中发现仍然有边与当前顶点相连,那么继续从这个顶点沿着未删除的边去DFS,同时进行压栈等一系列操作,最后,必定会回到该点,然后继续回溯,直到顶点,逆序输出,结束

顺序输出如果要得到正确答案,则必须保证dfs不会回溯,即一条直线深入,到直线的最后全部边已经都访问完了。
假设要搜索的路径是:1->2->1,这种时候顺序输出是没有问题的,因为它只有一条路径的选择。
但如果在路径中间再加一个小环(对欧拉回路并不影响),变成这样:
1->2->(3->2)->1,这个时候就有可能要回溯了,如果顺序输出,结果可能会变成:
1 2
2 1
2 3(开始回溯)
3 2

当然顺序输出也有一定的几率会正确,但不能得到保证:
1 2
2 3(先搜索小环)
3 2(结束小环,回到正轨)
2 1

而逆序输出是在弹栈的时候输出的,任意的搜索顺序下都可以确保小环在主线内容全部输出完之前得到输出的机会。

The Necklace UVA - 10054(欧拉回路)的更多相关文章

  1. UVA 10054 (欧拉回路) The Necklace

    题目:这里 题意:有一种由彩色珠子连接而成的项链,每个珠子两半由不同颜色(由1到50的数字表示颜色)组成,相邻的两个珠子在接触的地方颜色相同,现在有一些零碎的珠子,确认它是否能 复原成完整的项链. 把 ...

  2. Uva 10054 欧拉回路 打印路径

    看是否有欧拉回路 有的话打印路径 欧拉回路存在的条件: 如果是有向图的话 1.底图必须是连通图 2.最多有两个点的入度不等于出度 且一个点的入度=出度+1 一个点的入度=出度-1 如果是无向图的话 1 ...

  3. UVA 10054 The Necklace(欧拉回路,打印路径)

    题目链接: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  4. uva 10054 The Necklace(欧拉回路)

    The Necklace  My little sister had a beautiful necklace made of colorful beads. Two successive beads ...

  5. UVa 10054 The Necklace(无向图欧拉回路)

    My little sister had a beautiful necklace made of colorful beads. Two successive beads in the neckla ...

  6. UVA 10054 the necklace 欧拉回路

    有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...

  7. UVa 10054 (打印欧拉回路) The Necklace

    将每个颜色看成一个顶点,对于每个珠子在两个颜色之间连一条无向边,然后求欧拉回路. #include <cstdio> #include <cstring> + ; int G[ ...

  8. uva 10054 The Necklace 拼项链 欧拉回路基础应用

    昨天做了道水题,今天这题是比较水的应用. 给出n个项链的珠子,珠子的两端有两种颜色,项链上相邻的珠子要颜色匹配,判断能不能拼凑成一天项链. 是挺水的,但是一开始我把整个项链看成一个点,然后用dfs去找 ...

  9. UVa 10054 The Necklace【欧拉回路】

    题意:给出n个珠子,珠子颜色分为两半,分别用1到50之间的数字表示, 现在给出n个珠子分别的颜色,问是否能够串成一个环.即为首尾相连,成为一个回路 判断是否构成一个环,即判断是否为欧拉回路,只需要判断 ...

随机推荐

  1. Luogu1445 [Violet]樱花

    题面 题解 $$ \frac 1x + \frac 1y = \frac 1{n!} \\ \frac{x+y}{xy}=\frac 1{n!} \\ xy=n!(x+y) \\ xy-n!(x+y) ...

  2. python3工作环境部署+spyder3+jupyter notebook

    1.python3安装 1)官网去下载python3.7版本,双击安装,只要注意勾选写到PATH就行,其它直接NEXT. 2)安装完成,CMD键入 python 回车,跳出python界面就是成功. ...

  3. 【索引】MySQL索引

    一.索引的定义及作用 1. 二.索引的创建及删除 1.1查看表的索引 show index from tblname; 1.2.创建索引 1.22创建普通索引 ALTER TABLE `table_n ...

  4. pg执行计划

  5. exe4j 使用记录(二):jar打包exe

    一.环境 exe4j: 6.0.2 jre(32位): 1.8 二.打包过程 1.新建一个文件夹testExe(我的目录位置:D:\testExe)用来存放所需要打成exe的jar包.jdk或者jre ...

  6. PHP双向队列

    假定队列的左边为头部,右边为尾部 <?php class myDeque { private $deque=array(); /** *头部进队列 */ public function lPus ...

  7. linux信号处理相关知识

      因为要处理最近项目中碰上的多个子进程退出信号同时到达,导致程序不当产生core的情况,今天我花了时间看了一些关于linux信号处理的博客. 总结一下:(知识未经实践) linux信号分两种,一种实 ...

  8. 阿里云服务器Centos上Apache安装SSL证书配置Https

    首先我们先去阿里云申请一个免费的SSL证书(https://common-buy.aliyun.com/?spm=5176.7968328.1266638..5e971232BzMSp5&co ...

  9. 爬虫2.4-scrapy框架-图片分类下载

    目录 scrapy框架-图片下载 1 传统下载方法: 2 scrapy框架的下载方法 3 分类下载完整代码 scrapy框架-图片下载 python小知识: map函数:将一个可迭代对象的每个值,依次 ...

  10. python编辑购物车

    一.需求分析 输入工资金额,进入购物车,并打印输出商品编号和价格,用户可以通过输入商品编号进行商品选购 余额不足时,打印提示信息 通过q进行退出结算 购物车能够循环购物 二.代码实现 ShoopCar ...