【CF123E】Maze
Solution
首先步数的话可以转化成每条边经过了几次这样来算
假设现在确定了起点\(S\)和终点\(T\),我们将\(T\)看成树根,那么考虑边\((u,v)\)的经过次数可以分成下面三种情况:
1.\((u,v)\)在\(S\)到\(T\)的路径上,那么这条边肯定要被经过,期望为1
2.\((u,v)\)不在\(S\)到\(T\)的路径上,但是在\(T\)包含\(S\)的那个儿子的子树里面,那么这条边有两种情况:被经过\(2\)次或者不被经过
考虑一下经过顺序对贡献的影响,可以得到这样的一个结论:如果\((u,v)\)所在的“分叉”的访问顺序在\(S\)到\(T\)的路径之前,那么这条边会被经过两次,否则就一次都不会被经过。也就是:

该图中的橙边会被访问两次而蓝边一次都不会被访问到
而\((u,v)\)所在的分叉的位置只可能在直接路径的前面或者后面,所以期望是\(2*\frac{1}{2}+0*\frac{1}{2}=1\)
3.\((u,v)\)不在\(T\)包含\(S\)的那个儿子的子树内,也就是上图中最左边的那种边,这种边是一定不会被经过的,期望是0
所以,\(T\)和\(S\)确定的情况下,期望其实就是\(T\)包含\(S\)的那个儿子的子树大小
然后就一遍dfs,记一个\(sz[i]\)表示子树大小,\(sum[i]\)表示子树内每个点成为入口的概率总和,统计答案就好了
代码大概长这样
#include<iostream>
#include<cstdio>
#include<cstring>
#define db double
using namespace std;
const int MAXN=1e5+10;
struct xxx{
int y,nxt;
}a[MAXN*2];
int h[MAXN],sz[MAXN];
db pen[MAXN],pex[MAXN],sum[MAXN];
int n,m,tot;
db ans,sumen,sumex;
void add(int x,int y);
void dfs(int fa,int x);
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
int x,y;
scanf("%d",&n);
memset(h,-1,sizeof(h));
tot=0;
for (int i=1;i<n;++i){
scanf("%d%d",&x,&y);
add(x,y); add(y,x);
}
sumex=0; sumex=0;
for (int i=1;i<=n;++i){
scanf("%lf%lf",&pen[i],&pex[i]);
sumen+=pen[i];
sumex+=pex[i];
}
ans=0;
dfs(0,1);
printf("%.15lf\n",ans/sumen/sumex);
}
void add(int x,int y){
a[++tot].y=y; a[tot].nxt=h[x]; h[x]=tot;
}
void dfs(int fa,int x){
int u;
sz[x]=1; sum[x]=pen[x];
for (int i=h[x];i!=-1;i=a[i].nxt){
u=a[i].y;
if (u==fa) continue;
dfs(x,u);
sz[x]+=sz[u];
sum[x]+=sum[u];
ans+=pex[x]*sum[u]*sz[u];
}
ans+=pex[x]*(sumen-sum[x])*(n-sz[x]);
}
【CF123E】Maze的更多相关文章
- 【hdu4035】Maze
Portal --> hdu4035 Solution 讲道理不是很懂为啥概d那么喜欢走迷宫qwq (推式子推的很爽的一题?) 首先大力dp列式子 用\(f[i]\)表示从\(i\)到离开的期望 ...
- 【XSY2525】Maze 2017多校
Description 考虑一个 N×M 的网格,每个网格要么是空的,要么是障碍物.整个网格四周都是墙壁(即第1行和第n行,第1列和第m列都是墙壁),墙壁有且仅有两处开口,分别代表起点和终点.起点总是 ...
- 【南京邮电】maze 迷宫解法
[南京邮电]maze 迷宫解法 题目来源:南京邮电大学网络攻防训练平台. 题目下载地址:https://pan.baidu.com/s/1i5gLzIt (密码rijss) 0x0 初步分析 题目中给 ...
- 【】maze
[链接]点击打开链接 [题意] 小 T 被放到了一个迷宫之中,这个迷宫由 n 个节点构成,两个节点之间可能存在多条无 向边,小 T 的起点为 1 号节点,终点为 n 号节点.有 m 条无向边,对于每一 ...
- 【转载】图论 500题——主要为hdu/poj/zoj
转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...
- 【bfs】迷宫问题
[题目描述] 定义一个二维数组: int maze[5][5] = { 0,1,0,0,0, 0,1,0,1,0, 0,0,0,0,0, 0,1,1,1,0, 0,0,0,1,0, }; 它表示一个迷 ...
- 【HDOJ图论题集】【转】
=============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...
- 【LeetCode】深搜DFS(共85题)
[98]Validate Binary Search Tree [99]Recover Binary Search Tree [100]Same Tree [101]Symmetric Tree [1 ...
- 【LeetCode】BFS(共43题)
[101]Symmetric Tree 判断一棵树是不是对称. 题解:直接递归判断了,感觉和bfs没有什么强联系,当然如果你一定要用queue改写的话,勉强也能算bfs. // 这个题目的重点是 比较 ...
随机推荐
- selenium+python 搭建自动化环境
一.以搭建windows平台为例 准备工具如下: 1)下载Python 2)安装,配置环境变量 3)安装selenium,通过pip安装,命令如下: pip install selenium 方式二 ...
- thinkphp5登录并保存session、根据不同用户权限跳转不同页面
本文讲述如何在thinkphp5中完成登录并保存session.然后根据不同的用户权限跳转相应页面功能的实现.我也在学习thinkphp源码的路上,记录一下并与大家分享.完成该步骤主要有以下三个步骤完 ...
- TW实习日记:第五天
今天可以说是非常忙的一天了,要再项目中实现微信相关的功能:授权登录以及扫码登录,还有就是自建应用的发送消息.首先功能代码其实在经过了几天的学习之后并没有很难,但是最让我难受的是在项目中去加代码,首先s ...
- python的30个编程技巧
1.原地交换两个数字 x, y =10, 20 print(x, y) y, x = x, y print(x, y) 10 20 20 10 2.链状比较操作符 n = 10 print(1 &l ...
- Linux环境下Java应用性能分析定位-CPU使用篇
1 CPU热点分析定位背景 CPU资源还是很昂贵的,为了深刻感受到这种昂贵,间下图当前CPU的资源售价: 所以对于程序猿们来说,需要让程序合理高效的使用CPU资源.利用有限的CPU资源来解决完 ...
- Python基础灬列表&字典生成式
列表生成式 # 求1~10偶数的平方 # 1.常规写法 a_list = [] for i in range(1, 11): if i % 2 == 0: a_list.append(i * i) p ...
- mysql innodb myisam 比较
InnoDB: 支持事务处理等 不加锁读取 支持外键 支持行锁 不支持FULLTEXT类型的索引 不保存表的具体行数,扫描表来计算有多少行 DELETE 表时,是一行一行的删除 InnoDB 把数据和 ...
- gitLab服务器搭建+ rundeck自动化部署
git服务器搭建 https://blog.csdn.net/gx_1_11_real/article/details/79406427 rundeck 部署 https://blog.csdn. ...
- “献给爱读书的中国人”——Amazon Kindle软件测评
“献给爱读书的中国人” ——Amazon Kindle软件测评 前不久我在网上看到了一篇印度工程师旅居上海时发表的一篇文章,题目叫做<令人忧虑:不阅读的中国人>,大致讲述的是世界上人们在飞 ...
- Week2-作业1 -阅读《构建之法》
第一章 在阅读第1.2.2节时,感受最深,记得开学初有老师就给我们分析过计算机专业和我们专业的区别,当时是给我们讲的是计算机科学注重的是理论,偏向于硬件方面,而软件工程则注重实践,偏向于软件方面.然很 ...