P3338 [ZJOI2014]力

题目描述

给出n个数qi,给出Fj的定义如下:

\(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }\)

令\(E_i=\frac{F_i}{q_i}\),求\(E_i\).

输入输出格式

输入格式:

第一行一个整数\(n\)。

接下来\(n\)行每行输入一个数,第\(i\)行表示\(q_i\)。

输出格式:

\(n\)行,第\(i\)行输出\(E_i\)。

与标准答案误差不超过\(10^{-2}\)即可。

说明

对于\(30\%\)的数据,\(n\le1000\)。

对于\(50\%\)的数据,\(n\le60000\)。

对于\(100\%\)的数据,\(n\le100000\),\(0<qi<1000000000\)。

[spj 0.01]


鉴于本傻子一开始啥也看不出来还是写一写好了。

把两边分开考虑。令\(f(x)=\frac{1}{x^2},g(x)=q_x\),然后发现就是\(FFT\)的形式,看成系数做就可以了。

右边转过来以后同理。

有一些细节比如

  • 1/(i*i)会被卡精度,要写1/i/i
  • \(f(0)=g(0)=0\)

Code:

#include <cstdio>
#include <cmath>
#include <algorithm>
const int N=(1<<18)+10;
struct complex
{
double x,y;
complex(){}
complex(double x,double y){this->x=x,this->y=y;}
complex friend operator +(complex n1,complex n2){return complex(n1.x+n2.x,n1.y+n2.y);}
complex friend operator -(complex n1,complex n2){return complex(n1.x-n2.x,n1.y-n2.y);}
complex friend operator *(complex n1,complex n2){return complex(n1.x*n2.x-n1.y*n2.y,n1.x*n2.y+n1.y*n2.x);}
}a[N],b[N],tmpx,tmpy,wn,w;
const double pi=3.1415926535897632;
int n,turn[N],len=1,L=-1;
double out[N],q[N];
void FFT(complex *a,int typ)
{
for(int i=0;i<len;i++)
if(i<turn[i])
std::swap(a[i],a[turn[i]]);
for(int le=1;le<len;le<<=1)
{
wn=complex(cos(pi/le),typ*sin(pi/le));
for(int p=0;p<len;p+=le<<1)
{
w=complex(1,0);
for(int i=p;i<p+le;i++,w=w*wn)
{
tmpx=a[i],tmpy=w*a[i+le];
a[i]=tmpx+tmpy,a[i+le]=tmpx-tmpy;
}
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lf",q+i);
for(int i=1;i<=n;i++) a[i].x=q[i],b[i].x=1.0/i/i;
while(len<=n+1<<1) len<<=1,++L;
for(int i=0;i<len;i++) turn[i]=turn[i>>1]>>1|(i&1)<<L;
FFT(a,1),FFT(b,1);
for(int i=0;i<len;i++) a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=1;i<=n;i++) out[i]+=a[i].x/len;
for(int i=0;i<len;i++) a[i]=complex(0,0);
for(int i=1;i<=n;i++)
a[n+1-i]=complex(q[i],0);
FFT(a,1);
for(int i=0;i<len;i++) a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=1;i<=n;i++) out[n+1-i]-=a[i].x/len;
for(int i=1;i<=n;i++) printf("%lf\n",out[i]);
return 0;
}

2018.12.3

洛谷 P3338 [ZJOI2014]力 解题报告的更多相关文章

  1. [洛谷P3338] [ZJOI2014]力

    洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...

  2. 洛谷P3338 [ZJOI2014]力(FFT)

    传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...

  3. 洛谷 P3338 [ZJOI2014]力

    题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i> ...

  4. [bzoj3527] [洛谷P3338] [Zjoi2014]力

    Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...

  5. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  6. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  7. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  8. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  9. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

随机推荐

  1. 【转】ERROR 2003 (HY000): Can't connect to MySQL server on '192.168.1.165' (113)

    原文转自:http://blog.csdn.net/chengyuqiang/article/details/54285857 1.程序报错: com.mysql.jdbc.exceptions.jd ...

  2. iOS 上架的坑

    有3D-touch机型的坑 昨天在上线的时候遇到了一个坑,最后导致的结果是找了好几个小时,直接到半夜才能上线. 入正题: 坑是:项目运行在456上没什么问题,但是在6S以上的机型就有点击事件不响应的情 ...

  3. Maven学习(七)-----Maven添加远程仓库

    Maven添加远程仓库 默认情况下,Maven从Maven中央仓库下载所有依赖关系.但是,有些库丢失在中央存储库,只有在Java.net或JBoss的储存库远程仓库中能找到. 1. Java.net资 ...

  4. 自己动手做AI:Google AIY开发工具包解析

    2018年国际消费性电子展(CES)上,最明显的一个趋势是Amazon与Google的语音技术进驻战,如AmazonAlexa进驻到Acer笔电内,Google Assist进驻到KIA汽车内,其他如 ...

  5. 【ZABBIX】Zabbix触发器的告警原理及创建方法

    概述:       触发器中的表达式使用很灵活,我们可以创建一个复杂的逻辑测试监控,触发器表达式形式如下: {<server>:<key>.<function>(& ...

  6. xshell—实现Linux与Windows之间的文件传递

    在Windows系统上,通过xshell连接Linux系统. 第一种使用方式:从Linux系统上下载文件到Windows系统. 准备工作: $ sudo apt-get install lrzsz 安 ...

  7. springboot集成jpa,在postgresql数据库中创建主键自增表

    依赖文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http:/ ...

  8. mysql 性能优化 20 条建议

    MySQL性能优化的最佳20+条经验 2009年11月27日陈皓发表评论阅读评论100,946 人阅读   今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性 ...

  9. 在PHP中,是以分好结束一条语句的吗

    在PHP中,是以分号结束一条语句的,这个和C语言类似. 但是,有一条例外,对于PHP结束tag之前的语句,是可以不写分号的: <?php if ($a == $b) { echo "R ...

  10. UIView maskView属性

    给View1的maskView 赋值View2 1.View2不会显示在View1上: 2.View2 的alpha通道会体现在View1上. 关于maskView,Apple的解释: An opti ...