bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了...
还是欧拉扩展定理
于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂。因为一个数最多求log次phi就变成1,所以复杂度为O(logp*sqrt(p)),这题线性筛是比直接求要慢的...
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
int T,x;
int p[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
inline int phi(int x)
{
int ans=x;
for(int i=;i*i<=x;i++)
if(!(x%i))
{
ans=ans/i*(i-);
while(!(x%i))x/=i;
}
if(x>)ans=ans/x*(x-);
return ans;
}
inline int power(int a,int b,int mod)
{
if(!a)return ;int ans=;
for(;b;b>>=,a=1ll*a*a%mod)
if(b&)ans=1ll*ans*a%mod;
return ans;
}
int solve(int mod)
{
if(mod==)return ;int tmp;
return power(,solve(tmp=phi(mod))+tmp,mod);
}
int main()
{
read(T);
while(T--)read(x),printf("%d\n",solve(x));
return ;
}
bzoj3884: 上帝与集合的正确用法(数论)的更多相关文章
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- [bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...
随机推荐
- linux系统CPU内存磁盘监控发送邮件脚本
#!/bin/bashexport PATHexport LANG=zh_CN.UTF-8###top之后输入数字1,可以查看每颗CPU的情况.###先配置好mailx邮箱账号密码:#cat>/ ...
- python爬虫之requests库
在python爬虫中,要想获取url的原网页,就要用到众所周知的强大好用的requests库,在2018年python文档年度总结中,requests库使用率排行第一,接下来就开始简单的使用reque ...
- Python基础灬高阶函数(lambda,filter,map,reduce,zip)
高阶函数 lambda函数 关键字lambda表示匿名函数,当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便. lambda函数省略函数名,冒号前为参数,冒号后函数体. # ...
- asp.net mvc 使用Ajax调用Action 返回数据【转】
使用asp.net mvc 调用Action方法很简单. 一.无参数方法. 1.首先,引入jquery-1.5.1.min.js 脚本,根据版本不同大家自行选择. <script src=& ...
- React Native 【学习总结】-【常用命令】
前言 刚接触RN,相信很多人无从下手,不知道下一步要干什么,能干什么,本次学习围绕这个问题,将RN的常用命令总结一下,帮助你快速上手 架构理解 光知道命令的作用,远远不够,如果知道命令背后的意义,才能 ...
- python中Requests模块中https请求在设置为忽略有效性验证,屏蔽告警信息的方式
增加下面的就ok了from requests.packages.urllib3.exceptions import InsecureRequestWarningrequests.packages.ur ...
- 【探路者】团队Alpha周贡献分数分配结果
经本组成员商议,根据老师提供的分数,(每人携带10分进入团队,[探路者]团队7人,共计35分). 本周每位同学携带10分进入组内,7人共计70分.分数公布如下: 吴雨丹 15分 贾雅杰 12分 蔺依铭 ...
- Python语言基础
一.Python简介 Python是跨平台动态语言 特点:优雅.明确.简单 适用:web网站和网络服务:系统工具和脚步:包装其他语言开发的模块 不适用:贴近硬件(首选C):移动开发:IOS/Andro ...
- 技术博客HTML
<!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...
- lintcode-401-排序矩阵中的从小到大第k个数
401-排序矩阵中的从小到大第k个数 在一个排序矩阵中找从小到大的第 k 个整数. 排序矩阵的定义为:每一行递增,每一列也递增. 样例 给出 k = 4 和一个排序矩阵: [ [1 ,5 ,7], [ ...