Learning to Rank之Ranking SVM 简介
排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简介)。LTR有三种主要的方法:PointWise,PairWise,ListWise。Ranking SVM算法是PointWise方法的一种,由R. Herbrich等人在2000提出, T. Joachims介绍了一种基于用户Clickthrough数据使用Ranking SVM来进行排序的方法(SIGKDD, 2002)。
1. Ranking SVM的主要思想
Ranking SVM是一种Pointwise的排序算法, 给定查询q, 文档d1>d2>d3(亦即文档d1比文档d2相关, 文档d2比文档d3相关, x1, x2, x3分别是d1, d2, d3的特征)。为了使用机器学习的方法进行排序,我们将排序转化为一个分类问题。我们定义新的训练样本, 令x1-x2, x1-x3, x2-x3为正样本,令x2-x1, x3-x1, x3-x2为负样本, 然后训练一个二分类器(支持向量机)来对这些新的训练样本进行分类,如下图所示:
左图中每个椭圆代表一个查询, 椭圆内的点代表那些要计算和该查询的相关度的文档, 三角代表很相关, 圆圈代表一般相关, 叉号代表不相关。我们把左图中的单个的文档转换成右图中的文档对(di, dj), 实心方块代表正样本, 亦即di>dj, 空心方块代表负样本, 亦即di<dj。
2. Ranking SVM
将排序问题转化为分类问题之后, 我们就可以使用常用的机器学习方法解决该问题。 Ranking SVM使用SVM来进行分类:
其中w为参数向量, x为文档的特征,y为文档对之间的相对相关性, ξ为松弛变量。
3. 使用Clickthrough数据作为训练数据
T. Joachims提出了一种非常巧妙的方法, 来使用Clickthrough数据作为Ranking SVM的训练数据。
假设给定一个查询"Support Vector Machine", 搜索引擎的返回结果为
其中1, 3, 7三个结果被用户点击过, 其他的则没有。因为返回的结果本身是有序的, 用户更倾向于点击排在前面的结果, 所以用户的点击行为本身是有偏(Bias)的。为了从有偏的点击数据中获得文档的相关信息, 我们认为: 如果一个用户点击了a而没有点击b, 但是b在排序结果中的位置高于a, 则a>b。
所以上面的用户点击行为意味着: 3>2, 7>2, 7>4, 7>5, 7>6。
4. Ranking SVM的开源实现
H. Joachims的主页上有Ranking SVM的开源实现。
数据的格式与LIBSVM的输入格式比较相似, 第一列代表文档的相关性, 值越大代表越相关, 第二列代表查询, 后面的代表特征
3 qid:1 1:1 2:1 3:0 4:0.2 5:0 # 1A
2 qid:1 1:0 2:0 3:1 4:0.1 5:1 # 1B
1 qid:1 1:0 2:1 3:0 4:0.4 5:0 # 1C
1 qid:1 1:0 2:0 3:1 4:0.3 5:0 # 1D
1 qid:2 1:0 2:0 3:1 4:0.2 5:0 # 2A
2 qid:2 1:1 2:0 3:1 4:0.4 5:0 # 2B
1 qid:2 1:0 2:0 3:1 4:0.1 5:0 # 2C
1 qid:2 1:0 2:0 3:1 4:0.2 5:0 # 2D
2 qid:3 1:0 2:0 3:1 4:0.1 5:1 # 3A
3 qid:3 1:1 2:1 3:0 4:0.3 5:0 # 3B
4 qid:3 1:1 2:0 3:0 4:0.4 5:1 # 3C
1 qid:3 1:0 2:1 3:1 4:0.5 5:0 # 3D
训练模型和对测试数据进行排序的代码分别为:
./svm_rank_learn path/to/train path/to/model
./svm_classify path/to/test path/to/model path/to/rank_result
参考文献:
[1]. R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers, 2000.
[2]. T. Joachims. Optimizing Search Engines using Clickthrough Data. SIGKDD, 2002.
[3]. Hang Li. A Short Introduction to Learning to Rank.
[4]. Tie-yan Liu. Learning to Rank for Information Retrieval.
[5]. Learning to Rank简介
Learning to Rank之Ranking SVM 简介的更多相关文章
- 【机器学习】Learning to Rank之Ranking SVM 简介
Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning t ...
- Kemaswill 机器学习 数据挖掘 推荐系统 Ranking SVM 简介
Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Le ...
- Learning to Rank之RankNet算法简介
排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank ...
- Robust Tracking via Weakly Supervised Ranking SVM
参考文献:Yancheng Bai and Ming Tang. Robust Tracking via Weakly Supervised Ranking SVM Abstract 通常的算法:ut ...
- [Machine Learning] Learning to rank算法简介
声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...
- Learning to Rank 简介
转自:http://www.cnblogs.com/kemaswill/archive/2013/06/01/3109497.html,感谢分享! 本文将对L2R做一个比较深入的介绍,主要参考了刘铁岩 ...
- 【机器学习】Learning to Rank 简介
Learning to Rank 简介 去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值.L2R将机器学习的技术很好的应用到了排 ...
- Learning to Rank简介
Learning to Rank是采用机器学习算法,通过训练模型来解决排序问题,在Information Retrieval,Natural Language Processing,Data Mini ...
- Learning to Rank算法介绍:RankSVM 和 IR SVM
之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...
随机推荐
- python文件和目录操作方法大全(含实例)【python】
转自:http://www.jb51.net/article/48001.htm 一.python中对文件.文件夹操作时经常用到的os模块和shutil模块常用方法. 1.得到当前工作目录,即当前Py ...
- UE4修改自Rama的UDP通信蓝图插件
UE4.15没有提供蓝图UDP的组件,可以在网上找到一个ID叫Rama写的源代码,我把它封装成插件了(MyUdpPlugin),方便在各个UE4版本工程中使用UDP通信. 使用方式: 1.在自己的工程 ...
- coreseek/sphinx CentOS6.4下安装
一.在CentOS6.4下安装coreseek之前需要预先安装以下软件 1.打开终端 输入 su 获取管理员权限 2.输入命令 yum install make gcc g++ gcc-c++ lib ...
- Effective C++ —— 构造/析构/赋值运算(二)
条款05 : 了解C++默默编写并调用哪些函数 编译器可以暗自为class创建default构造函数.copy构造函数.copy assignment操作符,以及析构函数. 1. default构造函 ...
- jsonObject的一些方法
1.从前端传过来的数字,默认是Integer类型不能直接用Long接收 错误写法: 报错:Exception in thread "main" java.lang.ClassCas ...
- 集群应用Session一致性实现的三种方案
转自:http://blog.csdn.net/zwx521515/article/details/78679679 https://www.cnblogs.com/study-everyday/p/ ...
- zookeeper集群的安装和配置
Zookeeper的目的是封装好复杂易出错的关键服务,将简单易用的接口和性能高效.功能稳定的系统提供给用户.Zookeeper有两种运行模式,单机模式(Standalone)和集群模式(Distrib ...
- poj_3274 哈希
哈希 Hash 哈希是一种将复杂数据转换为线性数据从而可以进行随机访问的查找算法. 哈希经常用于对复杂数据(如结构体.对象等)的查找,在使用的时候,需要定义一个Hash函数,将需要查找的复杂对象转化为 ...
- 使用boch仿真器在x86 PC平台上搭建Linux0.11系统环境(windows下)
当你有机会来到这页面时 十有八九是遇到这样一个问题 执行配置文件bochsrc_fd.bxrc时出现找不到 ips的情况! 版本原因吧 将boch版本换成2.4的问题就迎刃而解了~ 简单 ...
- HTTP/2笔记之错误处理和安全
零.前言 这里整理了一下错误和安全相关部分简单记录. 一.HTTP/2错误 1. 错误定义 HTTP/2定义了两种类型错误: 导致整个连接不可使用的错误为连接错误(connection error) ...