性能度量RMSE
回归问题的典型性能度量是均方根误差(RMSE:Root Mean Square Error)。如下公式。

- m为是你计算RMSE的数据集中instance的数量。
- x(i)是第i个实例的特征值向量 ,y(i)是其label(期望的模型输出)。如下:

- X是包含了所有实例的特征值(不包含label)的矩阵。每行代表一个实例,并且每行等于x(i)向量的转置:(x(i))T 。 下图矩阵中的第一行为2中向量的转置(列向量变为行向量)。
- h是预测函数,当输入是某实例的特征向量x(i) ,应用函数之后,结果为ŷ(i)=h(x(i)). ŷ也叫作y-hat. 比如:对第一个实例应用函数h后结果为158400,即ŷ(1)=h(x(1))=158400。那么预测误差/错误为ŷ(1)-y(1) = 158400 - 156400 = 2000.
- RMSE(X,h) 是在数据集X上应用于函数h计算的cost function。
以上,我们使用小写斜体表示标量(m,y(i)),函数名(h)。小写粗体表示向量(x(i)). 大写粗体表示矩阵(X).
还有一种度量方法为: Mean Absolute Error. 理解起来也比较简单。
下面是一张图,通过线性关系生动解释了RMSE。4个黑色的点是数据集(包括标签),蓝色的线是我们的预测函数h: ŷ=2.50x-2。从而可以求出RMSE为0.707.与之前不同的是这里取m为3(m-1)而不是4。
结论: RMSE越小,说明模型越fit数据。

性能度量RMSE的更多相关文章
- 机器学习性能度量指标:AUC
在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标: ...
- 机器学习实战笔记(Python实现)-07-模型评估与分类性能度量
1.经验误差与过拟合 通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m:相应的,1-a/m称为“精度”(acc ...
- [sklearn]性能度量之AUC值(from sklearn.metrics import roc_auc_curve)
原创博文,转载请注明出处! 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积. 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于 ...
- 机器学习性能度量指标:ROC曲线、查准率、查全率、F1
错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1} ...
- 吴裕雄 python 机器学习——模型选择回归问题性能度量
from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...
- 吴裕雄 python 机器学习——模型选择分类问题性能度量
import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets ...
- 【分类问题中模型的性能度量(二)】超强整理,超详细解析,一文彻底搞懂ROC、AUC
文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 ...
- 【分类问题中模型的性能度量(一)】错误率、精度、查准率、查全率、F1详细讲解
文章目录 1.错误率与精度 2.查准率.查全率与F1 2.1 查准率.查全率 2.2 P-R曲线(P.R到F1的思维过渡) 2.3 F1度量 2.4 扩展 性能度量是用来衡量模型泛化能力的评价标准,错 ...
- 性能度量之Confusion Matrix
例子:一个Binary Classifier 假设我们要预测图片中的数字是否为数字5.如下面代码. X_train为训练集,每一个instance为一张28*28像素的图片,共784个features ...
随机推荐
- G1 GC日志:Application time: 0.8766273 seconds
启动日志一直循环: 1.159: Application time: 0.8766273 seconds 1.160: Total time for which application threads ...
- 【腾讯敏捷转型No.2】帅哥,来多少敏捷?
上回腾讯敏捷转型系列第一篇文章<敏捷到底是什么鬼?>讲到公司铁了心要推进敏捷,这是战略层面的决定,为什么呢? 当时的我们并不知道公司为什么一定要推行敏捷的新概念,但是后来公司的变化帮助我们 ...
- vue 复习(2)v-bind的应用 v-bind:classv-binf:style
dasdclass与style绑定v-bind 1. 绑定HTML Class 对象语法 有些时候我们想动态的切换class的类名.在原生的js或jq中我们就要通过事件来动态的改变class类名,但在 ...
- 转:Sql Server中清空所有数据表中的记录
如果要删除数据表中所有数据只要遍历一下数据库再删除就可以了,清除所有数据我们可以使用搜索出所有表名,构造为一条SQL语句进行清除了,这里我一一给各位同学介绍. 使用sql删除数据库中所有表是不难的 ...
- IE6下出现横向滚动条问题的解决方案
当我们在css样式设置为html {overflow-y:auto;}时,在ie7以上版本应用时不会有问题,可是在ie6下就会发现垂直滚动条出现会引起横向滚动条出现.究其原因是在ie6下,当内容过多出 ...
- 剑指Offer_编程题之用两个栈实现队列
题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型.
- 用Google Cloud Plateform使用ansible创建新实例
谷歌大法好,退aws保平安 ---假设自己现在有一个电脑(本机),先用谷歌云创一个服务器(主机) ,再通过ansible在谷歌云上创建一个服务器(节点)并进行控制 先把自己的公钥加到元数据里面,在go ...
- es6之扩展运算符 三个点(...)
对象的扩展运算符理解对象的扩展运算符其实很简单,只要记住一句话就可以: 对象中的扩展运算符(...)用于取出参数对象中的所有可遍历属性,拷贝到当前对象之中 let bar = { a: 1, b: 2 ...
- 大数据时代的结构化存储--HBase
迄今,相信大家肯定听说过 HBase,但是对于 HBase 的了解可能仅仅是它是 Hadoop 生态圈重要的一员,是一个大数据相关的数据库技术. 今天我带你们一起领略一下 HBase 体系架构,看看它 ...
- thinkphp5查询表达式IN使用小计
根据多个id批量更新指定字段值 $map[] = ['id','in', input('post.id/a')]; $result = db('picture')->where($map)-&g ...