回归问题的典型性能度量是均方根误差(RMSE:Root Mean Square Error)。如下公式。

  1. m为是你计算RMSE的数据集中instance的数量。
  2. x(i)是第i个实例的特征值向量 ,y(i)是其label(期望的模型输出)。如下:
  3. X是包含了所有实例的特征值(不包含label)的矩阵。每行代表一个实例,并且每行等于x(i)向量的转置:(x(i))T 。 下图矩阵中的第一行为2中向量的转置(列向量变为行向量)。

  4. h是预测函数,当输入是某实例的特征向量x(i) 应用函数之后,结果为ŷ(i)=h(x(i)). ŷ也叫作y-hat. 比如:对第一个实例应用函数h后结果为158400,即ŷ(1)=h(x(1))=158400。那么预测误差/错误为ŷ(1)-y(1) = 158400 - 156400 = 2000.
  5. RMSE(X,h) 是在数据集X上应用于函数h计算的cost function。

以上,我们使用小写斜体表示标量(m,y(i)),函数名(h)。小写粗体表示向量(x(i)). 大写粗体表示矩阵(X).

还有一种度量方法为: Mean Absolute Error. 理解起来也比较简单。

下面是一张图,通过线性关系生动解释了RMSE。4个黑色的点是数据集(包括标签),蓝色的线是我们的预测函数h: ŷ=2.50x-2。从而可以求出RMSE为0.707.与之前不同的是这里取m为3(m-1)而不是4。

结论: RMSE越小,说明模型越fit数据。

性能度量RMSE的更多相关文章

  1. 机器学习性能度量指标:AUC

    在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标:     ...

  2. 机器学习实战笔记(Python实现)-07-模型评估与分类性能度量

    1.经验误差与过拟合 通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m:相应的,1-a/m称为“精度”(acc ...

  3. [sklearn]性能度量之AUC值(from sklearn.metrics import roc_auc_curve)

    原创博文,转载请注明出处! 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积. 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于 ...

  4. 机器学习性能度量指标:ROC曲线、查准率、查全率、F1

    错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1} ...

  5. 吴裕雄 python 机器学习——模型选择回归问题性能度量

    from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...

  6. 吴裕雄 python 机器学习——模型选择分类问题性能度量

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets ...

  7. 【分类问题中模型的性能度量(二)】超强整理,超详细解析,一文彻底搞懂ROC、AUC

    文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 ...

  8. 【分类问题中模型的性能度量(一)】错误率、精度、查准率、查全率、F1详细讲解

    文章目录 1.错误率与精度 2.查准率.查全率与F1 2.1 查准率.查全率 2.2 P-R曲线(P.R到F1的思维过渡) 2.3 F1度量 2.4 扩展 性能度量是用来衡量模型泛化能力的评价标准,错 ...

  9. 性能度量之Confusion Matrix

    例子:一个Binary Classifier 假设我们要预测图片中的数字是否为数字5.如下面代码. X_train为训练集,每一个instance为一张28*28像素的图片,共784个features ...

随机推荐

  1. 点击底部input输入框,弹出的软键盘挡住input(苹果手机使用第三方输入法 )

    测试移动端页面的时候,偶然发现点击底部input输入框时,弹出的虚拟键盘偶尔会挡住input输入框. 输入框固定在页面底部,如图所示:   input固定底部设计图.png 点击底部input输入框唤 ...

  2. Vector/Push_back

    https://bbs.csdn.net/topics/370225285 https://blog.csdn.net/u013630349/article/details/46853297 http ...

  3. cuda cudnn anaconda gcc tensorflow 安装及环境配置

    1.首先,默认你已经装了适合你的显卡的nvidia驱动. 到  http://www.nvidia.com/Download/index.aspx 搜索你的显卡需要的驱动型号 那么接下来就是cuda的 ...

  4. BZOJ 1941: [Sdoi2010]Hide and Seek(k-d Tree)

    Time Limit: 16 Sec  Memory Limit: 162 MBSubmit: 1712  Solved: 932[Submit][Status][Discuss] Descripti ...

  5. makefile中的一些参数说明

    #obj = main.o sub.o add.o div.o mul.osrc = $(wildcard *.c) #搜索.c文件 可以加路径 obj = $(patsubst %.c, %.o, ...

  6. 使用img标签能使用background-size:conver一样的效果

    使用css img { object-fit: cover; object-position:left center; } 就可以达到 和 background-size:cover; 一样的效果 共 ...

  7. python django web 端文件上传

    利用Django实现文件上传并且保存到指定路径下,其实并不困难,完全不需要用到django的forms,也不需要django的models,就可以实现,下面开始实现. 第一步:在模板文件中,创建一个f ...

  8. Hbase(1)-MySQL海量数据存储的启发

    宽表拆分 有一张user表,记录了用户的信息,,如果表中的列有很多,就称之为宽表,为了提升效率,会进行垂直拆分 拆分后 将用户的信息分为基本信息和其他信息,页面一开打就需要展示的信息为基本信息,其他信 ...

  9. docker环境下构建flannel 网络

    flannel 是coreos 开发的网络解决方案,为每一台主机分配一个 subnet,容器从此subnet 中分配ip,ip可以在主机间路由.每个subnet从更大的ip池中划分,为了在各个主机间共 ...

  10. C语言中while语句里使用scanf的技巧

    今天友人和我讨论了一段代码,是HDU的OJ上一道题目的解,代码如下 #include<stdio.h> { int a,b; while(~scanf("%d%d",& ...