设f[i][j]为前i种强度选了j种且其中第i种选时前i个的最小误差。转移枚举上个选啥前缀和优化即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 256
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N];
ll s[N][N],f[N][N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4953.in","r",stdin);
freopen("bzoj4953.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++)
{
int x=read(),y=read();
a[x]=y;
}
n=;
for (int i=;i<=n;i++)
{
s[i][]=1ll*a[]*i*i;
for (int j=;j<=n;j++)
s[i][j]=s[i][j-]+1ll*a[j]*(i-j)*(i-j);
}
memset(f,,sizeof(f));
for (int i=;i<=n;i++) f[i][]=s[i][i];
for (int i=;i<=m;i++)
for (int x=i-;x<=n;x++)
for (int y=i-;y<x;y++)
f[x][i]=min(f[x][i],f[y][i-]+s[y][x+y>>]-s[y][y]+s[x][x]-s[x][(x+y>>)]);
for (int i=;i<n;i++) f[n][m]=min(f[n][m],f[i][m]+s[i][n]-s[i][i]);
cout<<f[n][m];
return ;
}

BZOJ4953 Wf2017Posterize(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. python 多线程笔记(2)-- 锁

    锁是什么?什么场合使用锁? 锁是一种机制,用于保护那些会引起冲突的资源. 比如上厕所,进去之后第一件事干嘛?把厕所门反锁!表示什么呢?表示这个厕所正在使用中! 至于在厕所里面干大事.干小事.还是打飞机 ...

  2. 【转载】C/C++杂记:深入虚表结构

    原文:C/C++杂记:深入虚表结构 1. 虚表与“虚函数表” 在“C/C++杂记:虚函数的实现的基本原理”一文中曾提到“虚函数表”的概念,只是为了便于理解,事实是:虚函数表并不真的独立存在,它只是虚表 ...

  3. day1 post验证登录

    用post方式模拟 1.登录抽屉网 2.登录代码 ,URL,Form Data 中的信息写入 # coding=utf-8 #post 登录验证 import requests form_data = ...

  4. ptyhon基础篇 day1

    1.变量 print('helloworld!') name = 'alex' name2 = 'jack' print(name,name2) 2.input #用户输入 username = in ...

  5. 使用salt-ssh初始化系统安装salt-minion

    salt-ssh介绍及使用方法 在ssh上执行salt命令和状态而不安装salt-minion,类似于ansible. 1. salt-ssh的安装: [root@linux-node1 ~]# yu ...

  6. 袋鼠云旗下新公司云掣科技启航,深耕云MSP业务助推企业数字化转型

    1983年3月15日,国际消费者联盟组织将3月15日确立为国际消费者权益日. 2019年3月15日,袋鼠云举办三周年年会. 一生二,二生三,三生万物.植树节后,万物生长. 年会现场,袋鼠云宣布成立新公 ...

  7. K8S-RedisCluster搭建

    简介         Redis-Cluster采用无中心结构,每个节点保存数据和整个集群状态,每个节点都和其他所有节点连接, mastart节点之间存放的数据并不是相同的,只是其中的一部分,当我们请 ...

  8. 多重共性和VIF检验

    图片来源https://wenku.baidu.com/view/7008df8383d049649b66581a.html 和 https://wenku.baidu.com/view/6acdf9 ...

  9. 【python】详解time模块功能asctime、localtime、mktime、sleep、strptime、strftime、time等函数以及时间的加减运算

    在Python中,与时间处理相关的模块有:time.datetime以及calendar.学会计算时间,对程序的调优非常重要,可以在程序中狂打时间戳,来具体判断程序中哪一块耗时最多,从而找到程序调优的 ...

  10. LibLas学习笔记

    LibLas学习笔记 las  什么是Las格式 LAS文件格式是数据用户之间交换三维点云数据的公共文件格式. 虽然这种格式主要用于交换激光雷达点云数据,但是它支持交换任何三维的x.y.z 数组. 这 ...