题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w;二是给定u,v保证pos[v] - pos[u] >= w。求pos[n] - pos[1]最大,若无解输出-1,无穷多解输出-2。

思路:光看题目好像和最短路无关,其实这里用到了spfa的松弛操作来保证所给出的两种要求。若pos[v] - pos[u] >= w,则pos[v] +(- w) >=  pos[u],也就是pos[v] +(- w) < pos[u]时进行松弛,建一条边v->u,权值-w,这就和spfa中的那一步对应上了,于是转化为了最短路。另一种条件也是如此操作。无解的情况应为出现了负环;无穷多解的情况为1和n没有条件约束,也就是1没有路通向n。

参考:

夜深人静写算法(四) - 差分约束

代码:

#include<cstdio>
#include<set>
#include<cmath>
#include<stack>
#include<vector>
#include<queue>
#include<cstring>
#include<string>
#include<sstream>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = +;
const int INF = 0x3f3f3f3f;
struct Edge{
int v,cost;
Edge(int _v = ,int _cost = ):v(_v),cost(_cost){}
};
vector<Edge> G[maxn];
bool vis[maxn];
int cnt[maxn];
int dist[maxn];
void addEdge(int u,int v,int cost){
G[u].push_back(Edge(v,cost));
}
bool spfa(int st,int n){
memset(vis,false,sizeof(vis));
memset(dist,INF,sizeof(dist));
vis[st] = true;
dist[st] = ;
queue<int> q;
while(!q.empty()) q.pop();
q.push(st);
memset(cnt,,sizeof(cnt));
cnt[st] = ;
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int i = ;i < G[u].size();i++){
int v = G[u][i].v;
if(dist[v] > dist[u] + G[u][i].cost){
dist[v] = dist[u] + G[u][i].cost;
if(!vis[v]){
vis[v] = true;
q.push(v);
if(++cnt[v] > n) return false;
}
}
}
}
return true;
}
int main(){
int n,ml,md;
scanf("%d%d%d",&n,&ml,&md);
for(int i = ;i <= n;i++) G[i].clear();
for(int i = ;i <= ml;i++){ //at most -> v - u <= w -> v <= w + u
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addEdge(u,v,w);
}
for(int i = ;i <= md;i++){ //at least -> v - u >= w -> u <= -w + v
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addEdge(v,u,-w);
}
bool cannot = spfa(,n);
if(!cannot){
printf("-1\n");
}
else{
if(dist[n] == INF){
printf("-2\n");
}
else{
printf("%d\n",dist[n]);
}
}
return ;
}

POJ 3169 Layout(差分约束+最短路)题解的更多相关文章

  1. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  2. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  5. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  6. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  7. poj 3169&hdu3592(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9687   Accepted: 4647 Descriptio ...

  8. Bellman-Ford算法:POJ No.3169 Layout 差分约束

    #define _CRT_SECURE_NO_WARNINGS /* 4 2 1 1 3 10 2 4 20 2 3 3 */ #include <iostream> #include & ...

  9. POJ 3169 Layout 差分约束系统

    介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...

随机推荐

  1. MQTT的学习研究(十五) MQTT 和android整合文章

    详细参考:  How to Implement Push Notifications for Android http://tokudu.com/2010/how-to-implement-push- ...

  2. Docker源码分析(五):Docker Server的创建

    1.Docker Server简介 Docker架构中,Docker Server是Docker Daemon的重要组成部分.Docker Server最主要的功能是:接受用户通过Docker Cli ...

  3. Android 判断是否是Rtl

    第一种方法: private boolean isRtl() { return TextUtils.getLayoutDirectionFromLocale(Locale.getDefault()) ...

  4. shell中的多进程【并发】(转)

    http://bbs.51cto.com/thread-1104907-1-1.html

  5. Hive JOIN使用详解

    转自http://shiyanjun.cn/archives/588.html Hive是基于Hadoop平台的,它提供了类似SQL一样的查询语言HQL.有了Hive,如果使用过SQL语言,并且不理解 ...

  6. 徐州网络赛A-Hard To Prepare【dp】【位运算】【快速幂】

    After Incident, a feast is usually held in Hakurei Shrine. This time Reimu asked Kokoro to deliver a ...

  7. C++ Websites

    C++ Websites C++ 推荐网站 1.cprogramming.com 2.cppreference.com 3.cplusplus.com 4.Boost C++ Library

  8. Oracle 的闪回技术 --flashback

    SQL Fundamentals: 表的创建和管理 如何开启数据库闪回? SQL> shutdown immediate; ORA-01109: database not open Databa ...

  9. android中Logcat的TAG过滤

    如果代码中有这样的log: Log.e("Foo", "error in foo"); Log.d("Foo", "debug i ...

  10. 缓存策略 半自动化就是mybaitis只支持数据库查出的数据映射到pojo类上,而实体到数据库的映射需要自己编写sql语句实现,相较于hibernate这种完全自动化的框架我更喜欢mybatis

    springboot入门(三)-- springboot集成mybatis及mybatis generator工具使用 - FoolFox - CSDN博客 https://blog.csdn.net ...