(Matlab)GPU计算简介,及其与CPU计算性能的比较
6、示例Matlab代码——GPU计算与CPU计算效率的对比
1、GPU与CPU结构上的对比
原文:
Multicore machines and hyper-threading technology have enabled scientists, engineers, and financial analysts to speed up computationally intensive applications in a variety of disciplines. Today, another type of hardware promises even higher computational performance: the graphics processing unit (GPU).
Originally used to accelerate graphics rendering, GPUs are increasingly applied to scientific calculations. Unlike a traditional CPU, which includes no more than a handful of cores, a GPU has a massively parallel array of integer and floating-point processors, as well as dedicated, high-speed memory. A typical GPU comprises hundreds of these smaller processors (Figure 1).
个人注解1:从上图可以看出:CPU的核心数是远远小于GPU的核心数的,虽然CPU每个核心的性能非常强大,但是典型的GPU都包含了数百个小型处理器,这些处理器是并行工作的,如果在处理大量的数据时,就会表现出相当高的效率,这就是所谓的众人拾柴火焰高。
2、GPU能加速我的应用程序吗?
原文:
个人注解2:这两个条件的第二个我觉得是进行GPU计算的大前提,正是因为任务能够碎片化,才能够充分利用GPU的物理结构,从而提高计算效率。第一个说则条件说明了GPU计算需要将数据传输给GPU显存,这一步会花一些时间,如果数据传输花费的时间比较多的话,那就不推荐使用GPU计算啦。下面是我截的图片,演示了一个GPU计算的具体流程。
至于数据传输所花费的时间是什么量级,可以通过gpuArray函数和gather函数来传递一个矩阵B来做测试,两次传输过程之间不要做任何多余的操作,将该过程循环几千次然后求出其用时的平均值;依次改变B的大小重复上面的步骤,然后将B的大小作为横轴,平均传输时间做为纵轴,plot一个图即可。
由于目前我不太用GPU计算了,各种软件没有安装,不方便给出结果,感兴趣读者的可以亲自尝试验证一下,不再赘述。
3、GPU与CPU在计算效率上的对比
原文:
To evaluate the benefits of using the GPU to solve second-order wave equations, we ran a benchmark study in which we measured the amount of time the algorithm took to execute 50 time steps for grid sizes of 64, 128, 512, 1024, and 2048 on an Intel® Xeon® Processor X5650 and then using an NVIDIA® Tesla™ C2050 GPU.
For a grid size of 2048, the algorithm shows a 7.5x decrease in compute time from more than a minute on the CPU to less than 10 seconds on the GPU (Figure 4). The log scale plot shows that the CPU is actually faster for small grid sizes. As the technology evolves and matures, however, GPU solutions are increasingly able to handle smaller problems, a trend that we expect to continue.
个人注解3:这个图是非常直观的,我当时就是看到这个图才知道原来GPU计算这么厉害!!! 从上图可以看出,数据量越大,GPU计算相对于CPU计算的效率越高;而在数据量较小时,CPU计算的效率是远远高于GPU计算的,我觉得应该有两个原因(仅供参考):其中一个原因是,小量的数据可能根本占用不了GPU那么多的核心,而每个核心的计算效率又相对较低,所以速度会比较慢。另外一个原因,就是上面所说的数据传输相对耗时的原因。
4、利用Matlab进行GPU计算的一般流程
个人注解4:上图标记的地方解释了第二节所说的数据传输。
5、GPU计算的硬件、软件配置
5.1 硬件及驱动
电脑:联想扬天 M4400
系统:win 7 X64
硬件:NVIDIA GeForce GT 740M 独显2G
硬件驱动:
5.2 软件
Matlab 2015a 需要安装Parallel Computing Toolbox
VS 2013 只安装了 C++基础类
CUDA 7.5.18 只安装了Toolkit
6、示例Matlab代码——GPU计算与CPU计算效率的对比
%%首先以200*200的矩阵做加减乘除做比较
t = zeros(1,100);
A = rand(200,200);B = rand(200,200);C = rand(200,200);
for i=1:100
tic;
D=A+B;E=A.*D;F=B./(E+eps);
t(i)=toc;
end;mean(t)
%%%%ans = 2.4812e-04
t1 = gpuArray(zeros(1,100));
A1 = gpuArray(rand(200,200));
B1 = gpuArray(rand(200,200));
C1 = gpuArray(rand(200,200));
for i=1:100
tic;
D1=A1+B1;E1=A1.*D1;F1=B1./(E1+eps);
t1(i)=toc;
end;mean(t1)
%%%%ans = 1.2260e-04
%%%%%%速度快了近两倍!
%%然后将矩阵大小提高到2000*2000做实验
t = zeros(1,100);
A = rand(2000,2000);B = rand(2000,2000);C = rand(2000,2000);
for i=1:100
tic;
D=A+B;E=A.*D;F=B./(E+eps);
t(i)=toc;
end;mean(t)
%%%%ans = 0.0337
t1 = gpuArray(zeros(1,100));
A1 = gpuArray(rand(2000,2000));
B1 = gpuArray(rand(2000,2000));
C1 = gpuArray(rand(2000,2000));
for i=1:100
tic;
D1=A1+B1;E1=A1.*D1;F1=B1./(E1+eps);
t1(i)=toc;
end;mean(t1)
%%%%ans = 1.1730e-04
倍!!!
参考链接:https://ww2.mathworks.cn/company/newsletters/articles/gpu-programming-in-matlab.html
(Matlab)GPU计算简介,及其与CPU计算性能的比较的更多相关文章
- (Matlab)GPU计算及CPU计算能力的比较
%%首先以200*200的矩阵做加减乘除 做比较 t = zeros(1,100); A = rand(200,200);B = rand(200,200);C = rand(200,200); fo ...
- 从 SPIR-V 到 ISPC:将 GPU 计算转化为 CPU 计算
游戏行业越来越多地趋向于将计算工作转移到图形处理单元 (GPU) 中,导致引擎和/或工作室需要开发大量 GPU 计算着色器来处理不同的计算任务.但有时候在 CPU 上运行这些计算着色器非常方便,不必重 ...
- (一)tensorflow-gpu2.0学习笔记之开篇(cpu和gpu计算速度比较)
摘要: 1.以动态图形式计算一个简单的加法 2.cpu和gpu计算力比较(包括如何指定cpu和gpu) 3.关于gpu版本的tensorflow安装问题,可以参考另一篇博文:https://www.c ...
- GPU计算的十大质疑—GPU计算再思考
http://blog.csdn.NET/babyfacer/article/details/6902985 原文链接:http://www.hpcwire.com/hpcwire/2011-06-0 ...
- OpenCL入门:(二:用GPU计算两个数组和)
本文编写一个计算两个数组和的程序,用CPU和GPU分别运算,计算运算时间,并且校验最后的运算结果.文中代码偏多,原理建议阅读下面文章,文中介绍了OpenCL相关名词概念. http://opencl. ...
- Julia:高性能 GPU 计算的编程语言
Julia:高性能 GPU 计算的编程语言 0条评论 2017-10-31 18:02 it168网站 原创 作者: 编译|田晓旭 编辑: 田晓旭 [IT168 评论]Julia是一种用于数学计 ...
- GPU计算的后CUDA时代-OpenACC(转)
在西雅图超级计算大会(SC11)上发布了新的基于指令的加速器并行编程标准,既OpenACC.这个开发标准的目的是让更多的编程人员可以用到GPU计算,同时计算结果可以跨加速器使用,甚至能用在多核CPU上 ...
- Matlab插值计算各时刻磁法勘探日变观测值
Matlab插值计算各时刻磁法勘探日变观测值 在磁法勘探中,消日变影响的改正称为日变改正.进行日变改正时必须设立日变站,观测日变情况.根据日变数据和测点观测时间,对观测数据进行改正. 在本次磁法实习中 ...
- OpenGL实现通用GPU计算概述
可能比較早一点做GPU计算的开发者会对OpenGL做通用GPU计算,随着GPU计算技术的兴起,越来越多的技术出现,比方OpenCL.CUDA.OpenAcc等,这些都是专门用来做并行计算的标准或者说接 ...
随机推荐
- SVN常见问题及解决方法(转载)
svn常见符号 黄色感叹号(有冲突):--这是有冲突了,冲突就是说你对某个文件进行了修改,别人也对这个文件进行了修改,别人抢在你提交之前先提交了,这时你再提交就会被提示发生冲突,而不允许你提交,防止你 ...
- SpringBoot使用SpringSecurity搭建基于非对称加密的JWT及前后端分离的搭建
SpringBoot使用SpringSecurity搭建基于非对称加密的JWT及前后端分离的搭建 - lhc0512的博客 - CSDN博客 https://blog.csdn.net/lhc0512 ...
- Linux下的pure-ftp的安装详解
FTP(File Transfer Protocol)是文件传输协议,常用于Internet上控制文件的双向传输.同时,它也是一个应用程序,用户可以通过它把自己PC机与世界各地所运行FTP协议的服务器 ...
- django-mvvm(django的FormObject)
MVVM简介 MVVM模式是Model-View-ViewMode模式的简称.由视图(View).视图模型(ViewModel).模型(Model)三部分组成,结构如下图.通过这三部分实现UI逻辑.呈 ...
- [原创]chromium源码阅读-进程间通信IPC.消息的接收与应答
chromium源码阅读-进程间通信IPC.消息的接收与应答 chromium源码阅读-进程间通信IPC.消息的接收与应答 介绍 chromium进程间通信在win32下是通过命名管道的方式实现的 ...
- Mirror--日志流压缩
在SQL SERVER 2008之后,主库和镜像库之间的日志流传送会默认使用压缩,压缩一方面降低了网络压力,另一方面增大了镜像两端的CPU压力. 可以打开 TF 1462 来关闭日志流压缩 SQL S ...
- OCR技术浅探:Python示例(5)
文件说明: 1. image.py——图像处理函数,主要是特征提取: 2. model_training.py——训练CNN单字识别模型(需要较高性能的服务器,最好有GPU加速,否则真是慢得要死): ...
- sublime text2和3怎么设置修改字体
首先,请打开你的sublime text2或3,点击工具栏中的Preferences 然后打开Settings-User 打开Settings-User之后 如下图 请复制以下代码然后粘贴至花括号内 ...
- MySQL创建索引命令
MySQL索引类型 普通索引 创建索引的方式 -- 直接新建索引 CREATE INDEX indexName ON mytable(username(length)) -- 修改表结构新建索引 AL ...
- Solr安装步骤
一.Solr概述 1.什么是Solr Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器.Solr提供了比Lucene更为丰富的查询语言,同时实现了可 ...