看了一点《数据算法:Hadoop/Spark大数据处理技巧》,觉得有必要了解一下 Spark 。

以上。

Spark was introduced by Apache Software Foundation for speeding up the Hadoop computational computing software process.

As against a common belief, Spark is not a modified version of Hadoop and is not, really, dependent on Hadoop because it has its own cluster management. Hadoop is just one of the ways to implement Spark.

Spark uses Hadoop in two ways – one is storage and second is processing. Since Spark has its own cluster management computation, it uses Hadoop for storage purpose only.

Hadoop 是对大数据集进行分布式计算的标准工具,允许使用相对便宜的商业硬件集群进行超级计算机级别的计算。不过,Hadoop 也存在很多已知限制。比如说 MapReduce 作业的 I/O 成本很高,导致交互分析和迭代算法(iterative algorithms)开销很大。但是事实上,几乎所有的最优化和机器学习都是迭代的。为了解决这些问题,Hadoop 一直在向一种更为通用的资源管理框架转变,即 YARN(Yet Another Resource Negotiator, 又一个资源协调者)。而 Spark 是第一个脱胎于该转变的快速、通用分布式计算范式,拥有自己的集群管理方式,并不是 Hadoop 的一个新版本。Hadoop 只是 Spark 实现方式的一种,而且只是用来存储数据。

Apache Spark

Apache Spark is a lightning-fast cluster computing technology, designed for fast computation. It is based on Hadoop MapReduce and it extends the MapReduce model to efficiently use it for more types of computations, which includes interactive queries and stream processing. The main feature of Spark is its in-memory cluster computing that increases the processing speed of an application.

Spark is designed to cover a wide range of workloads such as batch applications, iterative algorithms, interactive queries and streaming. Apart from supporting all these workload in a respective system, it reduces the management burden of maintaining separate tools.

Spark 是个轻量快速的集群计算技术,设计成能进行快速的计算。使用函数式编程范式扩展了 MapReduce 模型以支持更多计算类型,可以涵盖广泛的工作流,这些工作流之前被实现为 Hadoop 之上的特殊系统。Spark 使用内存缓存来提升性能,因此进行交互式分析也足够快速。缓存同时提升了迭代算法的性能,这使得 Spark 非常适合数据理论任务,特别是机器学习。

Evolution of Apache Spark

Spark is one of Hadoop’s sub project developed in 2009 in UC Berkeley’s AMPLab by Matei Zaharia. It was Open Sourced in 2010 under a BSD license. It was donated to Apache software foundation in 2013, and now Apache Spark has become a top level Apache project from Feb-2014.

Spark 由 UC(University of California) Berkeley AMP lab (加州大学伯克利分校的AMP实验室) 开发。

Features of Apache Spark

Apache Spark has following features.

  • Speed − Spark helps to run an application in Hadoop cluster, up to 100 times faster in memory, and 10 times faster when running on disk. This is possible by reducing number of read/write operations to disk. It stores the intermediate processing data in memory.
  • Supports multiple languages − Spark provides built-in APIs in Java, Scala, or Python. Therefore, you can write applications in different languages. Spark comes up with 80 high-level operators for interactive querying.
  • Advanced Analytics − Spark not only supports ‘Map’ and ‘reduce’. It also supports SQL queries, Streaming data, Machine learning (ML), and Graph algorithms.

Spark Built on Hadoop

The following diagram shows three ways of how Spark can be built with Hadoop components.

There are three ways of Spark deployment as explained below.

  • Standalone − Spark Standalone deployment means Spark occupies the place on top of HDFS(Hadoop Distributed File System) and space is allocated for HDFS, explicitly. Here, Spark and MapReduce will run side by side to cover all spark jobs on cluster.
  • Hadoop Yarn − Hadoop Yarn deployment means, simply, spark runs on Yarn without any pre-installation or root access required. It helps to integrate Spark into Hadoop ecosystem or Hadoop stack. It allows other components to run on top of stack.
  • Spark in MapReduce (SIMR) − Spark in MapReduce is used to launch spark job in addition to standalone deployment. With SIMR, user can start Spark and uses its shell without any administrative access.

Components of Spark

The following illustration depicts the different components of Spark.

Apache Spark Core

Spark Core is the underlying general execution engine for spark platform that all other functionality is built upon. It provides In-Memory computing and referencing datasets in external storage systems.

包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。

Spark SQL

Spark SQL is a component on top of Spark Core that introduces a new data abstraction called SchemaRDD, which provides support for structured and semi-structured data.

Spark Streaming

Spark Streaming leverages Spark Core's fast scheduling capability to perform streaming analytics. It ingests data in mini-batches and performs RDD (Resilient Distributed Datasets) transformations on those mini-batches of data.

MLlib (Machine Learning Library)

MLlib is a distributed machine learning framework above Spark because of the distributed memory-based Spark architecture. It is, according to benchmarks, done by the MLlib developers against the Alternating Least Squares (ALS) implementations. Spark MLlib is nine times as fast as the Hadoop disk-based version of Apache Mahout (before Mahout gained a Spark interface).

一个常用机器学习算法库,算法被实现为对 RDD 的 Spark 操作。

GraphX

GraphX is a distributed graph-processing framework on top of Spark. It provides an API for expressing graph computation that can model the user-defined graphs by using Pregel abstraction API. It also provides an optimized runtime for this abstraction.

Spark 库本身包含很多应用元素,这些元素可以用到大部分大数据应用中,其中包括对大数据进行类似 SQL 查询的支持,机器学习和图算法,甚至对实时流数据的支持。

参考资料

Apache Spark : Introduction的更多相关文章

  1. CS100.1x Introduction to Big Data with Apache Spark

    CS100.1x简介 这门课主要讲数据科学,也就是data science以及怎么用Apache Spark去分析大数据. Course Software Setup 这门课主要介绍如何编写和调试Py ...

  2. Apache Spark源码走读之5 -- DStream处理的容错性分析

    欢迎转载,转载请注明出处,徽沪一郎,谢谢. 在流数据的处理过程中,为了保证处理结果的可信度(不能多算,也不能漏算),需要做到对所有的输入数据有且仅有一次处理.在Spark Streaming的处理机制 ...

  3. Spark(1) - Getting Started with Apache Spark

    Introduction Apache Spark is a general-purpose cluster computing system to process big data workload ...

  4. Introducing Apache Spark Datasets(中英双语)

    文章标题 Introducing Apache Spark Datasets 作者介绍 Michael Armbrust, Wenchen Fan, Reynold Xin and Matei Zah ...

  5. .net 开发者尝试Apache Spark™

    本文编译自一篇msdn magazine的文章,原文标题和链接为: Test Run - Introduction to Spark for .NET Developers https://msdn. ...

  6. Apache Spark大数据分析入门(一)

    摘要:Apache Spark的出现让普通人也具备了大数据及实时数据分析能力.鉴于此,本文通过动手实战操作演示带领大家快速地入门学习Spark.本文是Apache Spark入门系列教程(共四部分)的 ...

  7. Apache Spark简单介绍、安装及使用

    Apache Spark简介 Apache Spark是一个高速的通用型计算引擎,用来实现分布式的大规模数据的处理任务. 分布式的处理方式可以使以前单台计算机面对大规模数据时处理不了的情况成为可能. ...

  8. 关于Apache Spark

    Apache Spark :  https://www.oschina.net/p/spark-project

  9. Apache Spark源码剖析

    Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著   ISBN 978-7-121-25420- ...

随机推荐

  1. ubuntu init启动流程

    ubuntu的init方式有两种:一种是System V initialization,一种是Upstart.ubuntu6.10以前的版本是第一种方式,之后的版本是第二种方式. 在旧式的System ...

  2. Go RabbitMQ(四)消息路由

    RabbitMQ_Routing 本节内容我们将对发布订阅增加一个特性:订阅子集.比如我们将一些危险的错误消息保存进硬盘中,同时在控制台仍然能够读取所有的消息 Bingings 上一节内容我们将队列跟 ...

  3. mysql 递归查询 主要是对于层级关系的查询

    最近遇到了一个问题,在mysql中如何完成节点下的所有节点或节点上的所有父节点的查询?在Oracle中我们知道有一个Hierarchical Queries可以通过CONNECT BY来查询,但是,在 ...

  4. 打乱数组——shuffle

    在学习vue移动端音乐项目时,看到一个打乱数组函数,感觉很有意思就记录一下(意外发现:slice是个有趣的知识点) 原理:遍历数组,(let i = 0; i < _arr.length; i+ ...

  5. imx6 Android6.0.1 init.rc解析

    1. 概述 1.1 概述 之前分析过android5的init.rc,不过还是不够仔细,现在来看看android6的,多的就不写了,只写关键点 忘记一些基本概念可以先看看之前的笔记: Android5 ...

  6. mac terminal中快捷移动光标 持续更新。。。

    1.option + ←/→ 以单词为单位快速移动 2.ctrl + A 移动到行首 3.ctrl + B 移动到行尾 4.ctrl + K 删除光标后至行尾的内容

  7. C# 实现将listview中已经显示的数据导出到Access 数据库

    private void button1_Click(object sender, EventArgs e) { OleDbConnection dbconn = new OleDbConnectio ...

  8. html制作chm格式开源文档

    在主界面点击生成器,找到网页所在的文件夹. 然后用编译,还是找到网页文件夹.根据需要设置.TOC 那一项是目录,请根据需要修改. 特别要注意的是,预设那里,点击那个配置图标,会打开如下图的预设编辑器. ...

  9. Layui 好用的弹出框

    layui的下载地址: http://www.layui.com/ 需要引用layui里面的css跟js layui自带jquery var $ = layui.$ 一个直接弹出另一个窗体的弹出框 w ...

  10. Kinect1驱动 PCL OpenCV ROS 安装

    1. OpenCV安装 1)在终端安装依赖项sudo apt-get install build-essential libgtk2.0-dev libjpeg-dev libtiff4-dev li ...