BSGS算法(Baby Steps Giant Steps算法,大步小步算法,北上广深算法,拔山盖世算法)

适用问题

对于式子:

$$x^y=z(mod_p)$$

已知x,z,p,p为质数;

求解一个最小非负整数y;



存在一个y,属于[0,p-2](费马小定理)

于是有了一个笨拙的方法,枚举y

枚举y,期望效率:O(P)

寻求一种优化:

对式子变型:

设:$$y=i\sqrt{p}-j$$

则$$x^{i\sqrt{p}-j}=z(mod_p)$$

——这个变型的用意在于把y拆开

枚举y,变成枚举,i,j;

i在1~$\sqrt{p}$之间,j在0~$\sqrt{p}$之间

(根号上取整,其实i,j的范围大可大些——只要保证y不会小于0)

枚举(i,j),期望效率:$O(\sqrt{p}*\sqrt{}p)$

本质上没有优化

接着变型:

$$x^{i\sqrt{p}}=z*x^{j}(mod_p)$$ 

——这个变型的用意在于真正把y分离为两部分

枚举j,把等号右边的模后得数置于hash_table,此时同一个得数只留最大的j值;

从小到大枚举i,计算等号左边的模后得数,查询hash_table,第一个成功查询的i,与其相应的j,组成$i\sqrt{p}-j$即为最小的y,

期望效率:$O(\sqrt{p}*T(hash))$

效率优异,拔山盖世的bsgs算法,就是这样了;



例题:

[SDOI2011]计算器

代码:

#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
const int ss=;
using namespace std;
int hash_tab[],tot;
struct ss{
int nu,next,j;
}data[];
void work();
void work1();
void work2();
void work3();
LL Sqr(LL ,int );
int hash(int, int ,int );
LL z,y,p;
bool flag;
int main()
{
work();
}
void work(){
int T,K;
scanf("%d%d",&T,&K);
while(T--){
scanf("%lld%lld%lld",&y,&z,&p);
if(K==)
work1();
if(K==)
work2();
if(K==)
work3();
}
}
void work1(){
int i,j,k;
printf("%lld\n",Sqr(y,z));
}
void work2(){
int ans,less;
if((!(y%p)&&z)||((y%p)&&!z)){
printf("Orz, I cannot find x!\n");return;
}
printf("%lld\n",Sqr(y%p,p-)*z%p);
}
void work3(){
long long ysqrtp,sqrtp=ceil(sqrt(p));
memset(hash_tab,,sizeof(hash_tab));
memset(data,,sizeof(data));
long long l=,r=z%p;
int i,j;
if((!(y%p)&&z)||((y%p)&&!z)){
printf("Orz, I cannot find x!\n");return;
}
ysqrtp=Sqr(y,sqrtp);
for(i=;i<=sqrtp;i++)
hash(r,i,),(r*=y)%=p;
for(i=;i<=sqrtp;i++){
(l*=ysqrtp)%=p;
if((j=hash(l,,))!=-){
printf("%lld\n",i*sqrtp-j);
return ;
}
}
printf("Orz, I cannot find x!\n");
}
LL Sqr(LL x,int n){
LL ret=;
while(n){
if(n&)(ret*=x)%=p;
(x*=x)%=p;n>>=;
}
return ret;
}
int hash(int num,int j,int flag){
int tem;
for(tem=hash_tab[num%ss];tem;tem=data[tem].next){
if(data[tem].nu==num){
if(!flag&&j>data[tem].j)
data[tem].j=j;
return data[tem].j;
}
if(!data[tem].next&&!flag){
data[tem].next=++tot;
data[tot].j=j;
data[tot].nu=num;
return -;
}
}
if(!flag){
hash_tab[num%ss]=++tot;
data[tot].j=j;
data[tot].nu=num;
}
return -;
}

bsgs(Baby Steps Giant Steps)算法的更多相关文章

  1. BSGS(Baby Steps,Giant Steps)算法详解

    BSGS(Baby Steps,Giant Steps)算法详解 简介: 此算法用于求解 Ax≡B(mod C): 由费马小定理可知: x可以在O(C)的时间内求解:  在x=c之后又会循环: 而BS ...

  2. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  3. 【学习笔记】Baby Step Giant Step算法及其扩展

    1. 引入 Baby Step Giant Step算法(简称BSGS),用于求解形如\(a^x\equiv b\pmod p\)(\(a,b,p\in \mathbb{N}\))的同余方程,即著名的 ...

  4. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  5. 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法

    先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Gian ...

  6. HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法

    联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...

  7. HDU 2815 扩展baby step giant step 算法

    题目大意就是求 a^x = b(mod c) 中的x 用一般的baby step giant step 算法会超时 这里参考的是http://hi.baidu.com/aekdycoin/item/2 ...

  8. BSGS算法_Baby steps giant steps算法(无扩展)详解

    Baby Steps-Varsity Giant Step-Astronauts(May'n・椎名慶治) 阅读时可以听听这两首歌,加深对这个算法的理解.(Baby steps少女时代翻唱过,这个原唱反 ...

  9. BSGS_Baby steps giant steps算法

    BSGS这个主要是用来解决这个题: A^x=B(mod C)(C是质数),都是整数,已知A.B.C求x. 在具体的题目中,C一般是所有可能事件的总数. 解: 设m = ceil(sqrt(C))(ce ...

随机推荐

  1. React 组件模式

    简评:组件(component)是 React 的核心,了解它们有助于构建好的设计结构. 什么是组件(component) 组件运行你将 UI 拆分为独立的可重用的部分.和 JavaScript 函数 ...

  2. iOS学习笔记(6)——翻译苹果文档About Windows and Views

    About Windows and Views 关于窗口和视图 In iOS, you use windows and views to present your application’s cont ...

  3. Junit 测试exception

    有两种方法: 一.使用ExpectedException 仅在junit4.7以上支持.不仅可以测试捕获到某异常,也可以测试异常message. 使用例子如下: @Rule public Expect ...

  4. docker阿里云镜像加速器使用

    加速器使用:加快镜像下载速度 访问www.aliyun.com: 登录之后点击”控制台“,选择“产品与服务“: 选择“容器镜像服务“: 设定密码后选择“镜像加速器”:  这里会有一个加速器地址:  在 ...

  5. (三)Audio子系统之AudioRecord.startRecording

    在上一篇文章<(二)Audio子系统之new AudioRecord()>中已经介绍了Audio系统如何创建AudioRecord对象以及输入流,并创建了RecordThread线程,接下 ...

  6. springboot自定义jmx对象

    在使用springboot-admin对springboot项目进行监控的时候我们发现其是具有web访问jmx对象的功能的,那它内部是怎么实现的呢. Jolokia是一个JMX-http桥梁,它提供了 ...

  7. (转)jieba中文分词的.NET版本:jieba.NET

    简介 平时经常用Python写些小程序.在做文本分析相关的事情时免不了进行中文分词,于是就遇到了用Python实现的结巴中文分词.jieba使用起来非常简单,同时分词的结果也令人印象深刻,有兴趣的可以 ...

  8. Window对象的判定方法

    /* window对象的判定,由于ECMA是不规范Host对象,window对象属于Host,所以也没有约定,所以就算是Object.prototype也对它无可奈何, 而且如果根据window.wi ...

  9. php实现函数可变参数列表

    使用func_get_args().func_num_args().func_get_arg() 可以构造一个可变参数列表的函数. 首先大致介绍以上三个函数. (1)array func_get_ar ...

  10. git 检出项目部分目录(稀疏检出)

    git clone 会把整个项目都clone下来,对于大项目git status比较慢,每次pull时候也拉取一些无关的代码或者文件:git可以实现像svn一样检出部分目录 步骤: git clone ...