题意

一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和。

dsu on tree

用来解决子树问题

好像不能带修改??

暴力做这个题,就是每次扫一遍子树统计答案

时间\(O(n^2)\)

或者会高级的数据结构解决

空间,编程难度是个挑战

然而\(dsu \ on \ tree\)树上启发式合并则是一个好方法

它通过增加对重儿子子树信息的利用来提高效率

流程:

递归轻儿子

递归重儿子

统计答案

如果该点为它父亲的重儿子,保存信息

否则删除信息

复杂度分析:

每个点被扫到的次数只有它到根的路径上轻边的次数*\(2\)次

也就是\(log\)次

那么总复杂度为空间\(O(n)\),时间\(O(nlogn)\)

该题代码

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} const int maxn(1e5 + 5); int n, first[maxn], cnt, col[maxn], size[maxn], son[maxn], vis[maxn], num[maxn], mx;
ll sum[maxn], ans[maxn]; struct Edge{
int to, next;
} edge[maxn << 1]; IL void Add(RG int u, RG int v){
edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++;
} IL void Dfs(RG int u, RG int ff){
size[u] = 1;
for(RG int e = first[u]; e != -1; e = edge[e].next){
RG int v = edge[e].to;
if(v != ff){
Dfs(v, u);
size[u] += size[v];
if(size[v] > size[son[u]]) son[u] = v;
}
}
} IL void Update(RG int u, RG int ff, RG int val){
sum[num[col[u]]] -= col[u];
num[col[u]] += val;
sum[num[col[u]]] += col[u];
if(val > 0) mx = max(mx, num[col[u]]);
else while(mx && !sum[mx]) --mx;
for(RG int e = first[u]; e != -1; e = edge[e].next)
if(edge[e].to != ff && !vis[edge[e].to]) Update(edge[e].to, u, val);
} IL void Solve(RG int u, RG int ff, RG int op){
size[u] = 1;
for(RG int e = first[u]; e != -1; e = edge[e].next)
if(edge[e].to != ff && edge[e].to != son[u]) Solve(edge[e].to, u, 0);
if(son[u]) Solve(son[u], u, 1), vis[son[u]] = 1;
Update(u, ff, 1), vis[son[u]] = 0;
ans[u] = sum[mx];
if(!op) Update(u, ff, -1);
} int main(){
n = Input();
for(RG int i = 1; i <= n; ++i) col[i] = Input(), first[i] = -1;
for(RG int i = 1; i < n; ++i){
RG int u = Input(), v = Input();
Add(u, v), Add(v, u);
}
Dfs(1, 0), Solve(1, 0, 1);
for(RG int i = 1; i <= n; ++i) printf("%lld ", ans[i]);
return 0;
}

dsu on tree(CF600E Lomsat gelral)的更多相关文章

  1. CF600E Lomsat gelral(dsu on tree)

    dsu on tree跟冰茶祭有什么关系啊喂 dsu on tree的模板题 思想与解题过程 类似树链剖分的思路 先统计轻儿子的贡献,再统计重儿子的贡献,得出当前节点的答案后再减去轻儿子对答案的贡献 ...

  2. cf600E. Lomsat gelral(dsu on tree)

    题意 题目链接 给出一个树,求出每个节点的子树中出现次数最多的颜色的编号和 Sol dsu on tree的裸题. 一会儿好好总结总结qwq #include<bits/stdc++.h> ...

  3. CF600E Lomsat gelral——线段树合并/dsu on tree

    题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...

  4. CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths

    Lomsat gelral 一棵以\(1\)为根的树有\(n\)个结点,每个结点都有一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号(若有数量一样的,则求编号和). \(n \le 10^ ...

  5. [CF600E]Lomsat gelral

    题意翻译 一棵树有n个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 线段树合并板子题,没啥难度,注意开long long 不过这题$dsu$ $on$ $tre ...

  6. CF600E Lomsat gelral 树上启发式合并

    题目描述 有一棵 \(n\) 个结点的以 \(1\) 号结点为根的有根树. 每个结点都有一个颜色,颜色是以编号表示的, \(i\) 号结点的颜色编号为 \(c_i\)​. 如果一种颜色在以 \(x\) ...

  7. CF600E Lomsat gelral 【线段树合并】

    题目链接 CF600E 题解 容易想到就是线段树合并,维护每个权值区间出现的最大值以及最大值位置之和即可 对于每个节点合并一下两个子节点的信息 要注意叶子节点信息的合并和非叶节点信息的合并是不一样的 ...

  8. CF600E Lomsat gelral (启发式合并)

    You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour. Let's cal ...

  9. CF600E Lomsat gelral (dfs序+莫队)

    题面 题解 看到网上写了很多DSU和线段树合并的题解,笔者第一次做也是用的线段树合并,但在原题赛的时候却怕线段树合并调不出来,于是就用了更好想更好调的莫队. 这里笔者就说说莫队怎么做吧. 我们可以通过 ...

随机推荐

  1. Tsung安装指南

    1. 所需要软件包unixODBC-2.2.14.tar.gzotp_src_R13B02-1.tar.gztsung-1.3.1.tar.gzTemplate-Toolkit-2.22.tar.gz ...

  2. 浅谈Android选项卡(三)

    上一节介绍了TabActivity的简单用法,但是现在的Api中已经不建议使用了,建议使用Fragment来替代以上的功能,下面介绍下使用Fragment和ViewPager的结合使用. http:/ ...

  3. java_I/O字符流

    I/O流(Stream) INPUT:输入流,从文件里读OUPUT:输出流,写内容到文件 IO流分为:字符流和字节流 字符流:处理纯文本文件. 字节流:处理可以所有文件. 字符输出流测试: @Test ...

  4. P5242 [USACO19FEB]Cow Dating

    题目链接 题意分析 首先我们可以得出计算公式 \[s_i=\prod_{k=1}^i(1-p_k)\] \[f_i=\sum_{k=1}^i\frac{p_k}{1-p_k}\] 那么 \[ans(i ...

  5. POJ 2192

    #include <iostream> #include <string> #define MAXN 500 using namespace std; bool dp[MAXN ...

  6. FlowPortal-BPM——离线审批(邮箱审批)配置

    一.将系统文件复制到安装目录下 二.以管理员身份运行bat安装程序 三.开启邮件离线审批服务 四.创建数据库表(JAVA数据库 或 .Net数据库) 五.配置config文件(发件箱.收件箱.错误问题 ...

  7. go 语言学习 1

    Go语言命名 Go语言关键字 1.Go语言有25个关键字: 2.关键字用途: var :用于变量的声明const :用于常量的声明type :用于声明类型func :用于声明函数和方法package ...

  8. 问题 K: 周期串plus

    问题 K: 周期串plus 时间限制: 1 Sec  内存限制: 128 MB提交: 682  解决: 237[提交] [状态] [命题人:外部导入] 题目描述 如果一个字符串可以由某个长度为k的字符 ...

  9. Mac OS 10.12后Caps lock(大写键)无法使用的解决办法

    ▲打开设置中的键盘选项,并切换至输入源选项标签, ▲取消勾选“使用大写锁定键来回切换“美国英文””, ▲这时再按下Caps lock即可正常使用大小写切换. ▲Update:目前macOS 10.12 ...

  10. html5+js+.Net的即时多人聊天

            今天看了下websocket的知识,了解到这是html5新增的特性,主要用于实时web的通信.之前客户端获取服务端的数据,是通过客户端发出请求,服务端进行响应的模式,或者通过ajax每 ...