博弈---威佐夫博奕(Wythoff Game)
威佐夫博奕(Wythoff
Game):有两堆各若干个物品,两个人轮流从某一堆或同
时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示
两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们
称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,
10)、(8,13)、(9,15)、(11,18)、(12,20)。
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有
如下三条性质:
1。任何自然数都包含在一个且仅有一个奇异局势中。
由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak
-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。
2。任意操作都可将奇异局势变为非奇异局势。
事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其
他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由
于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
3。采用适当的方法,可以将非奇异局势变为奇异局势。
假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了
奇异局势(0,0);如果a = ak ,b > bk,那么,取走b – bk个物体,即变为奇异局
势;如果 a = ak , b < bk ,则同时从两堆中拿走 ak – ab – ak个物体,变为奇异局
势( ab – ak , ab – ak+ b – ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余
的数量a – ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k)
,从第二堆里面拿走 b – bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b – a
j 即可。
从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜
;反之,则后拿者取胜。
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,…,n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近
似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[
j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1
+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异
局势。
#include"stdio.h"
#include"string.h"
#include"string.h"
#include"math.h"
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=-1)
{
if(n<m) {n=n^m;m=n^m;n=n^m;} //不用中间变量的n,m值交换
int k=n-m;
n=(int)(k*(1+sqrt(5.0))/2);
if(n==m) printf("0\n"); //输
else printf("1\n"); //赢
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
博弈---威佐夫博奕(Wythoff Game)的更多相关文章
- 博弈论基础知识: 巴什博奕+斐波那契博弈+威佐夫博奕+尼姆博弈(及Staircase)(转)
(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.若(m+1) | n,则先手必败,否则先手必胜.显然,如果n=m+1 ...
- HDU 5973 Aninteresting game 威佐夫博奕(Wythoff Game)
HDU 5973:http://acm.hdu.edu.cn/showproblem.php?pid=5975 题意: 有两堆石子,每次可以从一堆石子中取任意个,或者从两堆石子中取相同个数的石子.两个 ...
- hdu 2177 取(2堆)石子游戏(威佐夫博奕)
题目链接:hdu 2177 这题不是普通的 Nim 博弈,我想它应该是另一种博弈吧,于是便推 sg 函数打了个 20*20 的表来看,为了方便看一些,我用颜色作了标记,打表代码如下: #include ...
- 【威佐夫博奕】 betty定理 poj 1067
Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...
- 新疆大学ACM-ICPC程序设计竞赛五月月赛(同步赛)- chess(威佐夫博奕)
---恢复内容开始--- 链接:https://www.nowcoder.com/acm/contest/116/G来源:牛客网 题意:一个棋盘,老王和小人下棋,棋子只能往下或者往左或者往左下走,小人 ...
- hdu 2177(威佐夫博奕)
题意:容易理解,在威佐夫博奕的基础上新增加了一条要求:就是如果在赢得条件下,输出第一步怎么走. 分析:使用暴力判断,详细见代码. 代码: #include<stdio.h> #includ ...
- hdu 1527(威佐夫博奕)
题意:容易理解. 分析:威佐夫博奕的模板题. 代码实现: #include<stdio.h> #include<string.h> #include<math.h> ...
- poj1067威佐夫博奕
取石子游戏 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 31490 Accepted: 10374 Descripti ...
- Poj 1067 取石子游戏(NIM,威佐夫博奕)
一.Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子. ...
随机推荐
- javascript对象定义及创建
javascript对象 定义 javascript中的对象,可以理解成是一个键值对的集合,键是调用每个值的名称,值可以是基本变量,还可以是函数和对象. 创建方法 第一种方法 通过顶级Object类来 ...
- C#7特性
- 脱离matlab运行可执行程序的步骤
MCR是由matlab的运行环境,占用不到600M的对于用不同matlab版本生成的exe文件,MCR版本也会有不同,因此,在程序打包时,最好将相应版本的MCR一起打包.MCR环境的设置文件存放目录如 ...
- Oracle入门第二天(下)——单行函数
一.概述 以下内容完整参阅,参考官方文档函数手册部分:https://docs.oracle.com/cd/E11882_01/nav/portal_5.htm 离线chm手册英文版:链接:https ...
- 20155317王新玮 2016-2017-2《Java程序设计》第2周学习总结
20155317 2016-2017-2<Java程序设计>第2周学习总结 课本知识: 认识类型与环境 整数:包括short,int,long .它们分别占用2个字节,4个字节和8个字节. ...
- apt-get doesn't work
apt-get upgrade Reading package lists... DoneBuilding dependency tree Reading state informatio ...
- 【CF527C】Glass Carving
[CF527C]Glass Carving 题面 洛谷 题解 因为横着切与纵切无关 所以开\(set\)维护横着的最大值和纵着的最大值即可 #include <iostream> #inc ...
- golang 单元测试
单元测试是质量保证十分重要的一环,好的单元测试不仅能及时地发现问题,更能够方便地调试,提高生产效率.所以很多人认为写单元测试是需要额外的时间,会降低生产效率,是对单元测试最大的偏见和误解. go 语言 ...
- javaweb(十四)——JSP原理
一.什么是JSP? JSP全称是Java Server Pages,它和servle技术一样,都是SUN公司定义的一种用于开发动态web资源的技术. JSP这门技术的最大的特点在于,写jsp就像在写h ...
- 手摸手,和你一起学习 UiPath Studio
学习 RPA 的路上坑比较多,让我们手摸手,一起走…… 以下是一些学习 UiPath 和 RPA 的资源, 拿走不用谢! UiPath Studio 中文文档 机器人流程自动化其实是很好的概念和技术, ...