Monocular Visual-Inertial Odometry:https://www.qualcomm.com/invention/research

单目视觉-惯性里程计

INDOOR POSITIONING BY VISUAL-INERTIAL ODOMETRY:Link

vio(visual inertial odometry) in mobile phone in github:

inertial navigation system:惯性导航系统 开源软件

手机惯导系统

Visual inertial odometry:视觉惯性里程计 http://mse.hust.edu.cn/admin.php/index/view/aid/4433.html

Abstract: Visual inertial odometry (VIO) is a technique to estimate the change of a mobile platform in position and orientation over time by using the measurements from on-board cameras and IMU sensor. Recently VIO attracts significant attentions from large number of researchers and is gaining the popularity in various potential applications due to the miniaturization in size and low cost in price of two sensing modularities. However, it is very challenging in both of technical development and engineering implementation when accuracy, real time performance, robustness, and operation scale are taken into consideration. This talk is to report the state of the art VIO techniques from the perspectives of filtering and optimisation based approaches, which are two dominated approaches adopted in the research area. Various filtering based approaches optimisation based approaches are introduced and their link will be clarified. Some video clips will be demonstrated during the talk.

Dongbing Gu简历: Dongbing Gu is a professor in School of Computer Science and Electronic Engineering, University of Essex, UK. His current research interests include distributed control algorithms, distributed information fusion, cooperative control, model predictive control, and machine learning. He has published more than 180 papers in international conferences and journals.  His research has been supported by Royal Society, EPSRC, EU FP7, British Council, and industries. He is a board member of International Journal of Model, Identification, and Control, Cognitive Computations, Intelligent Industrial Systems, and Frontiers Robotics and AI. He served as a member of organizing committee and programme committee for many international conferences. Prof. Gu is a senior member of IEEE.

>>初始位置的确定:自身位置+桩位

Monocular Visual-Inertial Odometry单目视觉惯性里程计的更多相关文章

  1. 论文阅读——Visual inertial odometry using coupled nonlinear optimization

    简介:论文提出一种新的视觉里程计算法,其直接利用带噪声的IMU数据和视觉特征位置来优化相机位姿.不同于对IMU和视觉数据运行分离的滤波器,这种算法将它们纳入联合的非线性优化框架中.视觉特征的透视重投影 ...

  2. Trifo-VIO:Roubst and Efficient Stero Visual Inertial Odometry using Points and Lines论文笔记

    这是2018-IROS上的一篇文章,亮点是作者提出了Lines特征的VIO方案,还有就是提出一个新颖的回环检测,不是用传统的基于优化的方法或者BA,另外作者还发布了一个新的用于VIO的数据集.亮点主要 ...

  3. 视觉惯性里程计Visual–Inertial Odometry(VIO)概述

    周围很多朋友开始做vio了,之前在知乎上也和胖爷讨论过这个问题,本文主要来自于知乎的讨论. 来自https://www.zhihu.com/question/53571648/answer/13772 ...

  4. (3)视觉里程计 Visual Odometry

    首先分析include头文件下的slamBase.h文件 # pragma once // 各种头文件 // C++标准库 #include <fstream> #include < ...

  5. svo:一个半直接单目视觉里程计(长期更新)

    源码:https://github.com/uzh-rpg/rpg_svo/tree/master/svo 视频:https://www.youtube.com/watch?v=2YnIMfw6bJY ...

  6. 第三篇 视觉里程计(VO)的初始化过程以及openvslam中的相关实现详解

    视觉里程计(Visual Odometry, VO),通过使用相机提供的连续帧图像信息(以及局部地图,先不考虑)来估计相邻帧的相机运动,将这些相对运行转换为以第一帧为参考的位姿信息,就得到了相机载体( ...

  7. SLAM——视觉里程计(一)feature

    从现在开始下面两篇文章来介绍SLAM中的视觉里程计(Visual Odometry).这个是我们正式进入SLAM工程的第一步,而之前介绍的更多的是一些基础理论.视觉里程计完成的事情是视觉里程计VO的目 ...

  8. SLAM+语音机器人DIY系列:(三)感知与大脑——3.轮式里程计与运动控制

    摘要 在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话.朝着这个理想,我准备设计一个能自由行走,并且可以与人语音对话的机器人.实现的关键是让机器人能通过传感器感知周围环境,并通过 ...

  9. SLAM+语音机器人DIY系列:(四)差分底盘设计——6.底盘里程计标

    摘要 运动底盘是移动机器人的重要组成部分,不像激光雷达.IMU.麦克风.音响.摄像头这些通用部件可以直接买到,很难买到通用的底盘.一方面是因为底盘的尺寸结构和参数是要与具体机器人匹配的:另一方面是因为 ...

随机推荐

  1. CSS背景图像的简单响应

    本文设有很多,最理想的解决方案,响应图像只是其中之一.我们建议您查看不同的方法,然后再选择一个特定的响应图像解决方案,包括这两个:如何避免重复下载响应图像中选择响应图像解决方案. 大家都在谈论的的sr ...

  2. Bootstrap-Plugin:滚动监听(Scrollspy)插件

    ylbtech-Bootstrap-Plugin:滚动监听(Scrollspy)插件 1.返回顶部 1. Bootstrap 滚动监听(Scrollspy)插件 滚动监听(Scrollspy)插件,即 ...

  3. 把MacBook里的电影导入到iPad

    主要是用iTunes -> 文件 -> 添加到资料库,然后选择影片 -> 同步 -> 应用.在iPad上点开视频APP即可. 怎样才能把mac里的电影放到ipad里_百度知道 ...

  4. LAMP的安装和注意事项

    LAMP--Linux+Apache(httpd)+MySQL+PHP,是常用的web服务器架构,下面接受编译安装的过程,以及出现的错误. 注意事项: 1. 扩展epel源:参照:http://www ...

  5. ThinkPHP实现事务回滚示例代码

    ThinkPHP的事务回滚示例如下: ? 1 2 3 4 5 6 7 8 9 10 $m=D('YourModel');//或者是M(); $m2=D('YouModel2'); $m->sta ...

  6. 九jQuery源码解析之.each()

    jQuery中存在两个each方法都是用于遍历的, 一个是对jQuery对象集合使用.each(),用于遍历这个集合; .each(function(index,element)) 还有一个是扩展jQ ...

  7. sqlserver基础操作

    启动服务: 1.在系统服务启动 2.在sql配置管理器服务选项中启动 3.在管理员cmd:net start mssqlserver;net stop mssqlserver use master g ...

  8. Python处理文本换行符

    源文件每行后面都有回车,所以用下面输出时,中间会多了一行 try: with open("F:\\hjt.txt" ) as f : for line in f: print(li ...

  9. WordPress部署

    WordPress部署 WordPress是一个门户.博客网站的制作工具,php开发,自带后台,可以很简便的安装主题,还拥有一个庞大的主题网站生态. 软件下载:https://cn.wordpress ...

  10. jeesite快速开发平台(四)----数据库各表一览

    转自:https://blog.csdn.net/u011781521/article/details/55194309