UVa 100 - The 3n + 1 problem(函数循环长度)
The 3n + 1 problem |
Background
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.
The Problem
Consider the following algorithm:
1. input n
2. print n
3. if n = 1 then STOP
4. if n is odd then
5. else
6. GOTO 2
Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)
Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given nthis is called the cycle-length of n. In the example above, the cycle length of 22 is 16.
For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.
The Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.
You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.
You can assume that no operation overflows a 32-bit integer.
The Output
For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).
Sample Input
1 10
100 200
201 210
900 1000
Sample Output
1 10 20
100 200 125
201 210 89
900 1000 174 解题分析:根据题目描述需要在给定的区间里面找出循环长度最长的。
首先明确这个函数是什么?
函数f(n)为分段函数:当n为奇数时f(n)=3n+1;当n为偶数时f(n)=n/2;
然后需要明白什么是循环长度?
就是当f(n)进行多少次内部运算之后才能得到 1。
最后就是代码:
(1)写出函数计算循环长度;
(2)由于题目中没有说明i,j的大小关系,同时题目要求输出的i,j顺序和输入的i,j顺序要相同,所以可以有两种方法:
第一种:输入i,j之后直接输出,然后计算最长循环长度;
第二种:输入i,j之后,声明新的变量来使用,计算过程中完全不影响i,j的值。最后输出时i,j直接输出即可。
已过代码:
#include <bits/stdc++.h> using namespace std; int length(int n) {
int len=;
while(n!=)
{
if(n%==)
n=*n+;
else
n=n/;
len=len+;
}
return len;
} int main(void) {
int start,over;
int s,o;
int ans;
while(~scanf("%d%d",&start,&over))
{
ans=;
s=start, o=over ;
if(s>o) swap(s,o);
for(int i=s;i<=o;i++)
{
int len=length(i);
ans=max(ans,len);
}
printf("%d %d %d\n",start,over,ans);
}
}
UVa 100 - The 3n + 1 problem(函数循环长度)的更多相关文章
- UVA 100 - The 3n+1 problem (3n+1 问题)
100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...
- uva 100 The 3n + 1 problem (RMQ)
uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem= ...
- 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)
// The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...
- PC/UVa 题号: 110101/100 The 3n+1 problem (3n+1 问题)
The 3n + 1 problem Background Problems in Computer Science are often classified as belonging to a ...
- UVa Problem 100 The 3n+1 problem (3n+1 问题)
参考:https://blog.csdn.net/metaphysis/article/details/6431937 #include <iostream> #include <c ...
- UVA 100 The 3*n+1 problem
UVA 100 The 3*n+1 problem. 解题思路:对给定的边界m,n(m<n&&0<m,n<1 000 000);求X(m-1<X<n+ ...
- 100-The 3n + 1 problem
本文档下载 题目: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_pro ...
- uva----(100)The 3n + 1 problem
The 3n + 1 problem Background Problems in Computer Science are often classified as belonging to a ...
- OpenJudge/Poj 1207 The 3n + 1 problem
1.链接地址: http://bailian.openjudge.cn/practice/1207/ http://poj.org/problem?id=1207 2.题目: 总时间限制: 1000m ...
随机推荐
- Java 集合系列09之 Map架构
概要 前面,我们已经系统的对List进行了学习.接下来,我们先学习Map,然后再学习Set:因为Set的实现类都是基于Map来实现的(如,HashSet是通过HashMap实现的,TreeSet是通过 ...
- vim 图解常用快捷键操作
图片太大,可以将图片另存后看或者右键点击,选择查看图片.
- 浅析I/O模型及其设计模式
前言 I/O在软件开发中的重要性无需多言,无论是在操作系统.网络协议.DBMS这种底层支撑软件还是在移动APP,大型网站服务器等应用软件的开发中都是最核心最重要的部分.特别是现在软件服务使用量和数据量 ...
- Scrum4.0
1.准备看板. 形式参考图4. 2.任务认领,并把认领人标注在看板上的任务标签上. 先由个人主动领任务,PM根据具体情况进行任务的平衡. 然后每个人都着手实现自己的任务. 3.为了团队合作愉快进展顺利 ...
- <转>——网络爬虫
网络蜘蛛即Web Spider,是一个很形象的名字.把互联网比喻成一个蜘蛛网,那么Spider就是在网上爬来爬去的蜘蛛.网络蜘蛛是通过网页的链接地址来寻找网页,从 网站某一个页面(通常是首页)开始,读 ...
- 重构第11天 使用策略代替Switch(Switch to Strategy)
理解:策略就是平常设计模式中所说的策略模式.因为当你有一个庞大的switch方法的时候,每一次新加一个条件,都要去修改这个方法,这样耦合性太高,不易维护也不易扩展.这样我们就可以使用策略的设计模式,使 ...
- jQuery的事件click
不管是在asp.net 还是asp.net mvc中,对象的click事件是我们最常用到的一个事件,说明用户click点击一下mouse的左键,铵下并放开的事件. 今天已经是十一月份了,学习又是新的开 ...
- Ajax,谷歌提示AutoCompleteExtender控件
提示内容从数据库中读取: ------------------------------------------页面 <asp:ScriptManager ID="ScriptManag ...
- 轻量级的移动 webapp 框架Jingle
一大早爬起来,发现这样的一个东东,国产,感觉实用性很强,试着用用. 1.28补记: 试着用jingle做了一个网站的移动版,感觉如果在布局上要求不高的话 - 目前支持的布局只有list,还是挺不错,做 ...
- No.011:Container With Most Water
问题: Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, a ...