这道题没有一个比较详细的题解,我来提供一份。

首先我们可以知道,反转区间的顺序对结果没有影响,而且一个区间如果翻转两次以上是没有意义的,所以,问题就变成了求哪些区间需要反转。

我们枚举k。对于每一个k,我们设计一个calc函数来判断k的操作次数。

显然的,我们可以设计出一种方法,就是每一次都检查最左端,然后进行反转,很容易写出下面的calc函数。

int calc(int k) {
int ans = 0;
int i;
for(i = 1; i + k - 1 <= N; i++) {
if(f[i] == 1) {
for(int j = i; j <= i + k - 1; j++) {
f[j] = !f[j];
}
ans++;
}
}
for(i--; i <= N; i++) {
if(f[i] == 1) return -1;
}
return ans;
}

这样的检查方式复杂度为O(n2),再结合枚举k,总的复杂度是O(n3),这样的复杂度可以通过70%的数据,但还不够好。

我们来考虑怎么优化。显然的,我们没有必要去记录每一个的状态,我们只需要存储每一个区间是否反转过。所以,我们定义

f[i]为区间[i, i+k-1]是否反转。

这样,反转的复杂度就降到了O(1),总的复杂度就降到了O(n2),这样我们就可以AC这道题了。

对于实现上还有一个问题,就是怎么判断每一个格子的状态,这个问题我们留给读者思考。

下面贴上calc的代码。

int calc(int K) {
memset(f, 0, sizeof(f));
int ans = 0;
int sum = 0;
for(int i = 0; i + K <= N; i++) {
if((g[i] + sum) % 2 != 0) {
ans++;
f[i] = 1;
}
sum += f[i];
if(i - K + 1 >= 0) sum-=f[i-K+1];
}
for(int i = N - K + 1; i < N; i++) {
if((g[i] + sum) % 2 != 0) {
return -1;
}
if(i-K+1 >= 0) {
sum-=f[i-K+1];
}
}
return ans;
}

如果有问题,可以私信。

P2882 Face The Right Way - USACO07MAR的更多相关文章

  1. bzoj1704 / P2882 [USACO07MAR]面对正确的方式Face The Right Way

    P2882 [USACO07MAR]面对正确的方式Face The Right Way $n<=5000$?枚举翻转长度,顺序模拟就ok了 对于每次翻转,我们可以利用差分的思想,再搞搞前缀和. ...

  2. 洛谷P2882 [USACO07MAR]面对正确的方式Face The Right Way(贪心)

    题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forwar ...

  3. P2882 [USACO07MAR]Face The Right Way [贪心+模拟]

    题目描述 N头牛排成一列1<=N<=5000.每头牛或者向前或者向后.为了让所有牛都 面向前方,农夫每次可以将K头连续的牛转向1<=K<=N,求操作的最少 次数M和对应的最小K ...

  4. 洛谷 P2882 [USACO07MAR]Face The Right Way G

    题目传送门 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing ...

  5. luogu P2882 [USACO07MAR]Face The Right Way G

    题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forwar ...

  6. [USACO07MAR]Face The Right Way G

    发现选定一个长度后,怎么翻转是固定的. 那我们直接选定一个长度去操作就行. 优化操作过程 类似于堆里打持久化标记一样的感觉. [USACO07MAR]Face The Right Way G // P ...

  7. bzoj1638 / P2883 [USACO07MAR]牛交通Cow Traffic

    P2883 [USACO07MAR]牛交通Cow Traffic 对于每一条边$(u,v)$ 设入度为0的点到$u$有$f[u]$种走法 点$n$到$v$(通过反向边)有$f2[v]$种走法 显然经过 ...

  8. bzoj1639 / P2884 [USACO07MAR]每月的费用Monthly Expense

    P2884 [USACO07MAR]每月的费用Monthly Expense 二分经典题 二分每个段的限制花费,顺便统计下最大段 注意可以分空段 #include<iostream> #i ...

  9. 拓扑排序/DP【洛谷P2883】 [USACO07MAR]牛交通Cow Traffic

    P2883 [USACO07MAR]牛交通Cow Traffic 随着牛的数量增加,农场的道路的拥挤现象十分严重,特别是在每天晚上的挤奶时间.为了解决这个问题,FJ决定研究这个问题,以能找到导致拥堵现 ...

随机推荐

  1. laraver ajax分页

    ,设置分页容器参考laraver手册 我的设置代码如下: ,控制器调用的方法:代码如下 );         include($path);         $content = ob_get_cle ...

  2. 深入理解 KVC\KVO 实现机制 — KVO

    KVC和KVO都属于键值编程而且底层实现机制都是isa-swizzing,所以本来想放在一起讲的.但是篇幅有限所以就分成了两篇博文. KVC实现机制传送门 KVO概述 键值观察Key-Value-Ob ...

  3. more命令

    more 命令 用于分屏显示 more命令一般用于显示内容超过一屏的文件.其他命令经常和more匹配使用,但more命令也客单独使用. (1)其他命令和more命令匹配使用: 格式:    其他命令格 ...

  4. vim 全局替换命令

    语法  :[addr]s/源字符串/目的字符串/[option]                     :%s/源字符串/目的字符串/c 全局替换命令为: :%s/源字符串/目的字符串/g [add ...

  5. Visual Studio找不到iOS模拟器

    Visual Studio找不到iOS模拟器 Visual Studio可以正常连接Mac系统,但是在测试时候,提示以下错误信息:Failed to start iOS Simulator in th ...

  6. Eval有什么功能?

    它的功能是把对应的字符串解析成JS代码并运行.应该尽量避免使用eval,因为不安全,非常耗性能.解析成JS代码要耗能,执行时也要耗能.

  7. BZOJ4140 : 共点圆加强版

    假设当前询问点为$(A,B)$,那么它在一个以$(x,y)$为圆心的圆里需要满足: $(x-A)^2+(y-B)^2\leq x^2+y^2$ $2Ax+2By\geq A^2+B^2$ 等价于询问所 ...

  8. BX2001: IE 支持使用 window.clipboardData 访问系统剪贴板,Chrome 和 Safari 中存在类似的 Clipboard 对象但尚未实现,Firefox 和 Opera 不支持这类对象

    http://www.w3help.org/zh-cn/causes/BX2001 标准参考 无 问题描述 IE 支持使用 window.clipboardData 对象内的一系列方法访问系统剪贴板: ...

  9. BZOJ3994: [SDOI2015]约数个数和

    Description  设d(x)为x的约数个数,给定N.M,求     Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M.   O ...

  10. ArcEngine开发 尝试读取或写入受保护的内存。这通常指示其他内存已损坏。

    if(pFeature!=null) { IPoint pnt = pFeature.Shape as IPoint; pntArray.Add(pnt); } 调试是pntArray.Add(pnt ...