数论笔记(Full Version)
数论笔记(Full Version)
一、数论基础:
1、整除:
重新定义除法:
对于计算式:\(a\div b\) 来说,其结果可以变化为以下的式子:$$a = b\lfloor \frac{a}{b} \rfloor + a \bmod b$$其中,\(\lfloor \dfrac{a}{b} \rfloor\) 为商,\(a \bmod b\) 为余数。定义:对于任意计算式 \(a\div b\) 来说,若其余数为 \(0\),则我们称作 \(b\) 能整除 \(a\),记做 \(b\mid a\)。
2、质数(素数):
- 定义:指除了 \(1\) 和其本身以外不能再被其他数所整除的数,我们称其为质数。
- 几个经典的质数:\(2,3,998244353,10^9+7\)。
3、模运算:
- 性质:
- 加法:\((a+b)\bmod c = (a\bmod c+b\bmod c)\bmod c\)。
- 减法:\((a-b)\bmod c=(a\bmod c - b\bmod c + c)\bmod c\)。
- 乘法:\((a\times b)\bmod c = a\bmod c \times (b\bmod c) \bmod c\)。
4、\(\gcd(a,b)\) 和 \(\operatorname{lcm}(a,b)\):
- \(\gcd(a,b)\):
- 作用:求得 \(a\),\(b\) 的最大公因数。
- 性质:
- \(\gcd(a,b) = \gcd(b,a)\)。
- \(\gcd(a,b) = \gcd(-a,b)\)。
- \(\gcd(a,b) = \gcd(|a|,|b|)\)。
- 若有 \(d\mid a\) 且 \(d \mid b\),则有 \(d\mid \gcd(a,b)\)。
- \(\gcd(a,0) = a\)。
- \(\gcd(a,ka) = a\)。
- \(\gcd(an,bn) = n \gcd(a,b)\)。
- \(\gcd(a,b) = \gcd(a,ka+b)\)。
- 实现:辗转相除法(欧几里得算法):
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
- \(\operatorname{lcm}(a,b)\):
- 作用:求得 \(a\),\(b\) 的最小公倍数。
- 性质:
- \(\gcd(a,b) \times \operatorname{lcm}(a,b) = a\times b\)。
- 若有 \(a\mid m\) 且 \(b\mid m\) 那么 \(\operatorname{lcm}(a,b) \mid m\)。
- 若 \(m,a,b\) 是正整数,那么\(\operatorname{lcm}(ma,mb) = m \times \operatorname{lcm}(a,b)\)。
- 实现:
long long lcm(const int a[], int n){
long long ans = 1;
for(int i = 1;i<=n;i++)
ans = ans * a[i] / gcd(ans,a[i]);
return ans;
}
5、同余:
定义:对于两个数 \(a\)、\(b\),如果 \(a \bmod m = b \bmod m\),那么我们就称 \(a\) 和 \(b\) 在模 \(m\) 的意义下同余,记做:\(a \equiv b \pmod m\)。
性质:
- 若 \(m \mid (a-b)\),则我们可以称 \(a\) 和 \(b\) 在模 \(m\) 的意义下同余。
- 若 \(a = mq + b\),则我们可以称 \(a\) 和 \(b\) 在模 \(m\) 的意义下同余。
- 若 \(a \equiv 0 \pmod m\),则称 \(m\mid a\)。
- 反身性:\(a\equiv a\pmod m\)。
- 对称性:若 \(a\equiv b \pmod m\),那么 \(b\equiv a \pmod m\)。
- 传递性:若 \(a\equiv b \pmod m\),\(b\equiv c \pmod m\),那么 \(a\equiv c \pmod m\)。
- 同余式相加:若 \(a\equiv b \pmod m\),\(c \equiv d \pmod m\),那么 \(a\pm c\equiv b\pm d \pmod m\)。
- 同余式相乘:若 \(a\equiv b\pmod m\),\(c \equiv d\pmod m\),那么 \(ac\equiv bd \pmod m\)。
- 同余幂运算:若 \(a\equiv b\pmod m\),那么 \(a^n\equiv b^n \pmod m\)。
- 若有整数 \(a,b\),正整数 \(k,m\),且有关系 \(a \equiv b \pmod m\),则有 \(ak \equiv bk \pmod {mk}\)。
- 若有整数 \(a,b\),正整数 \(d,m\),且存在 \(d \mid a,\, d\mid b,\, d\mid m\),并有关系 \(a\equiv b \pmod m\),则有 \(\dfrac{a}{d} \equiv \dfrac{b}{d} \pmod {\dfrac{m}{d}}\)。
- 若有整数 \(a,b\),正整数 \(d,m\),且存在 \(d\mid m\),并有关系 \(a\equiv b\pmod m\),则有 \(a\equiv b \pmod d\)。
- 若有整数 \(a,b\),正整数 \(d,m\),且存在 \(d = \gcd(b,m)\),则有 \(d = \gcd(a,m)\),换句话说,若存在 \(d\mid m,\, d\mid b\),则一定有 \(d\mid a\)。
6、同余类和剩余系:
- 剩余系:
- 定义:是指模正整数 \(n\) 的余数所组成的集合。
- 完全剩余系:一个包含了正整数 \(n\) 所有可能的余数的剩余系叫做完全剩余系,记做 \(Z_n\)。
- 简化剩余系:包含了完全剩余系中所有与 \(n\) 互质的数的剩余系,记做 \(Z^*_n\)。
- 在完全剩余系之下,所有的运算全部在模 \(n\) 意义下进行的。
- 定义:是指模正整数 \(n\) 的余数所组成的集合。
- 同余类:将满足同余关系的所有整数看作成一个同余等价类。
这里是穿越过来的 Larry76,事实上,在学习群论以后,剩余系的本质其实就是一种「环」,而同余类可以看做是环上的同一位置的不同表示的表示方法的集合。
7、互质:
- 定义:\(\forall a,b \in N\),若 \(\gcd(a,b) = 1\),那么就说 \(a\) 和 \(b\) 互质,记做 \(a \perp b\)。
- 性质:
- 两个不同的质数一定是互质的。
- 一个质数和另一个不为它倍数的数是互质的。
- \(1\) 与任意一个数(除了 \(1\) 本身)都是互质的。
- 相邻的两个自然数是互质的。
- 相邻的两个奇数是互质的。
- 较大数为质数的两个数是互质的。
- 斐波那契数列上两个相邻的数是互质的。
7、数论函数:
- 积性函数和完全积性函数:
- 积性函数:
- 定义:设有函数 \(f(x)\) 和变量 \(a,b\)。
\(\forall a\perp b\),我们有 \(f(ab) = f(a) \cdot f(b)\)
则函数 \(f(x)\) 为积性函数。
- 定义:设有函数 \(f(x)\) 和变量 \(a,b\)。
- 完全积性函数:
- 定义:设有函数 \(f(x)\) 和变量 \(a,b\)。
\(\forall a,b\),我们有 \(f(ab) = f(a) \cdot f(b)\)。
则函数 \(f(x)\) 为完全积性函数。
- 定义:设有函数 \(f(x)\) 和变量 \(a,b\)。
- 积性函数:
- 常见数论函数:
- 完全积性函数:
- 单位元:\(\operatorname{e}(n) = [n=1]\)。
- 常函数:\(\operatorname{I}(n) = 1\)。
- 单位函数:\(\operatorname{id}(n) = n\qquad(n\ge 1)\)。
- 积性函数:
- 莫比乌斯函数:
\[\mu(n) = \begin{cases}1 && n = 1 \\(-1)^k && \text{n没有平方因子}\\0 && \text{n有平方因子}\end{cases}
\]- 欧拉函数:
\[\varphi(n) = n\times \prod_{p|n}\frac{p-1}{p}
\]- 约数幂和函数:
\[\sigma_k(n) = \sum_{d|n}d^k
\]其中,当 \(k=0\) 时,可以简写为 \(\sigma(n)\)
- 完全积性函数:
数论笔记(Full Version)的更多相关文章
- RFC笔记—IP Version 6 Addressing Architecture
IP Version 6 Addressing Architecture,RFC4291 It includes the basic formats for the various types of ...
- mybatis-config.xml简单笔记
mybatis-config.xml简单笔记 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE ...
- applicationContext.xml简单笔记
applicationContext.xml简单笔记 <?xml version="1.0" encoding="UTF-8"?> <bean ...
- 关于oi
2015-12-26 今天在机房,楼上的孩子发下来一个exe,善良无知的我打开了那个exe,然后电脑就关机了.萌萌的辅导老师看到之后就不再萌萌哒,他跑到五楼训斥了那群孩子们一顿(自行脑补).出于报复, ...
- CEYE平台的使用
0x01 CEYE 是什么 CEYE是一个用来检测带外(Out-of-Band)流量的监控平台,如DNS查询和HTTP请求.它可以帮助安全研究人员在测试漏洞时收集信息(例如SSRF / XXE / R ...
- Lab 11-2
Analyze the malware found in Lab11-02.dll. Assume that a suspicious file named Lab11-02.ini was also ...
- 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
- 五一DAY1数论学习笔记
by ruanxingzhi 整除性 如果a能把b除尽,也就是没有余数,则我们称a整除b,亦称b被a整除.(不是除以,是整除!!) 记作:\(a|b\) |这个竖杠就是整除符号 整除的性质 自反性 对 ...
- 「算法笔记」快速数论变换(NTT)
一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...
随机推荐
- 洛谷 Luogu P1038 [NOIP2003 提高组] 神经网络
这题看着很吓人实则很简单.求输出层,正着求很麻烦,因为知不道谁连向这个点,所以可以反向建边,反着求. 拓扑+dfs,时间复杂度 \(\text{O(n + m)}\) #include <ios ...
- 代码随想录算法训练营第四天|力扣24.两两交换链表节点、力扣19.删除链表的倒数第N个结点、力扣面试02.07链表相交、力扣142.环形链表
两两交换链表中的节点(力扣24.) dummyhead .next = head; cur = dummyhead; while(cur.next!=null&&cur.next.ne ...
- ACl与ACL实验
ACl与ACL实验 ACL 1,ACL概述及 产生的背景 ACL: access list 访问控制列表 2,ACL应用 ACL两种应用: 应用在接口的ACL-----过滤数据包(原目ip地址,原目 ...
- JavaScript 基础(1) - 笔记
1 JavaScript基础 1.1 JavaScript 是什么 1.JavaScript(是什么?) 是一种运行在客户端(浏览器)的编程语言,实现人机交互效果. 2.作用(做什么?) 网页特效(监 ...
- 【JMeter】常用线程组设置策略
常用线程组设置策略 目录 常用线程组设置策略 一.前言 二.单场景基准测试 1.介绍 2.线程组设计 3.测试结果 三.单场景并发测试 1.介绍 2.线程组设计 3.测试结果 四.单场景容量/爬坡测试 ...
- 初识Redis与桌面客户端
Redis介绍 什么是Redis Redis(Remote Dictionary Server) 是一个使用 C 语言编写的,开源的(BSD许可)高性能非关系型(NoSQL)的键值对数据库. Redi ...
- vue3探索——组件通信之依赖注入
背景 通常情况下,当我们需要从父组件向子组件传递数据时,会使用 props.想象一下这样的结构:有一些多层级嵌套的组件,形成了一颗巨大的组件树,而某个深层的子组件需要一个较远的祖先组件中的部分数据.在 ...
- xlwt写入excel时候的合并单元格
简单版 import xlwt workbook = xlwt.Workbook() worksheet = workbook.add_sheet('My sheet') # 合并第0行的第0列到第3 ...
- mysql 大表如何ddl 👑
大家好,我是蓝胖子,mysql对大表(千万级数据)的ddl语句,在生产上执行时一定要千万小心,一不小心就有可能造成业务阻塞,数据库io和cpu飙高的情况.今天我们就来看看如何针对大表执行ddl语句. ...
- Solution -「CF 1477A」Nezzar and Board
Description Link. $ n $ distinct integers $ x_1,x_2,\ldots,x_n $ are written on the board. Nezzar ca ...